Construction of the Recombinant Yeast Strain of Pichia stipitis with Improved Alcoholic Fermentation of Xylose

1Dmytruk, KV, 1Kurylenko, OO, 1Ishchuk, OP, 1Ubiyvovk, VM, 2Sibirny, VA, 1Fedorovych, DV, 3Sibirny, AA
1Institute of Cell Biology, NAS of Ukraine, Lviv
2Rzeszowski Uniwersytet, Rzeszów, Poland
3Institute of Cell Biology, NAS of Ukraine, Lviv; Rzeszowski Uniwersytet, Rzeszów, Poland
Nauka innov. 2010, 6(6):45-50
https://doi.org/10.15407/scin6.06.045
Section: Scientific and Technical Innovative Projects of National Academy of Sciences of Ukraine
Language: Ukrainian
Abstract: 
The modified form of the xylose reductase (XR) of Pichia stipitis with decreased affinity toward NADPН(H+) was created via site-specific mutagenesis. Recombinant strain of P. stipitis overexpressing the mutated XR characterized by 1,3-fold increase in productivity of xylose alcoholic fermentation was constructed. The rates of alcoholic fermentation of hydrolyzates of wheat bran and sawdust were also improved.
Keywords: alcoholic fermentation, ethanol, Pichia stipitis, xylose, yeast
References: 
1. Jeffries T.W., Jin Y.S. Metabolic engineering for improved fermentation of pentoses by yeasts Appl. Microbiol. Biotechnol. 2004. Vol. 63. P. 495-509.
https://doi.org/10.1007/s00253-003-1450-0
2. Van Maris A.J., Abbott D.A., Bellissimi E., et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status Antonie Van Leeuwenhoek. 2006. Vol. 90, no 4. P. 391-418.
https://doi.org/10.1007/s10482-006-9085-7
3. Jeffries T.W., Grigoriev I.V., Grimwood J., et al. Genome sequence of the lignocellulose-bioconverting and xylosefermenting yeast Pichia stipitis. Nat. Biotechnol. 2007. Vol. 25, no 3. P. 319-326.
https://doi.org/10.1038/nbt1290
4. Lu P., Davis B.P., Hendrick J., Jeffries T.W. Cloning and disruption of the beta-isopropylmalate dehydrogenase gene (LEU2) of Pichia stipitis with URA3 and recovery of the double auxotroph. Appl. Microbiol. Biotechnol. 1998. Vol. 49, no 2. P. 141-146.
https://doi.org/10.1007/s002530051150
5. Sambrook J., Fritsh E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. 1989.
6. Passoth V., Hahn-Hagerdal B. Production of a heterologous endo-1,4-beta-xylanase in the yeast Pichia stipitis with an O2-regulated promoter. Enzyme and Microbial Thechnologies. 2000. Vol. 26. P. 781-784.
https://doi.org/10.1016/S0141-0229(00)00171-X
7. Gonchar M.V., Maidan M.M., Sibirny A.A. A new oxidase-peroxidase kit «Alcotest» for ethanol assays in alcoholic beverages. Food Technol. Biotechnol. 2001. Vol. 39. P. 37-42.
8. Verduyn C., van Kleef R., Frank J., et al. Properties of the NAD(P)H-dependent xylose reductase from the xylosefermenting yeast Pichia stipitis. Biochem. J. 1985. Vol. 226. P. 669-677.
https://doi.org/10.1042/bj2260669
9. Jeffries T., van Vleet J. Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res. 2009. Vol. 9. P. 793-807.
https://doi.org/10.1111/j.1567-1364.2009.00525.x
10. Petschacher B., Nidetzky B. Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl. Environ. Microbiol. 2005. Vol. 71, no 10. P. 6390-6393.
https://doi.org/10.1128/AEM.71.10.6390-6393.2005
11. Dmytruk O.V., DmytrukK.V., Abbas C.A., et al. Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microb. Cell. Fact. 2008. Vol. 23. P. 7-21.
https://doi.org/10.1186/1475-2859-7-21
12. Voronovsky A.A., Abbas C.A., Fayura L.R., et al. Development of a transformation system for the flavinogenic yeast Candida famata. FEMS Yeast Res. 2002. Vol. 2, no 3. P. 381-388.