11(1)11

Nauka innov. 2015, 11(1):59-71
https://doi.org/10.15407/scin11.01.059

Ya.B. Blume1, Ya.V. Pirko1, O.M. Burlaka1, M.M. Borova1, I.A. Danylenko1, P.S. Smertenko2, A.I. Yemets1
1 SО «Institute of Food Biotechnology and Genomics», NAS of Ukraine, Kyiv
2 V.Ye. Lashkaryov Institute of Semiconductor Physics (ISP), NAS of Ukraine, Kyiv

 

«Green» Synthesis of Noble Metal Nanoparticles and CdS Semiconductor Nanocrystals Using Biological Material

Section: Celebrating the 10th Anniversary of the Journal
Language: Ukrainian
Abstract: The basic principles of synthesis of metal nanoparticles and semiconductor nanocrystals and its application prospects are considered. The relevance of the exploiting living systems and their components for the development of «green » synthesis technology for nano-objects with the unique properties and a wide range of applications is analyzed. The biotechnological synthesis of nanoparticles of silver, gold and bimetallic silver-gold nanoparticles using plant extracts of Magnolia denudata, M. stellata, Camellia sinensis var. sinensis, C. sinensis var. assamica, Orthosiphon stamineus and Hypericum perforatum is described. The results of cadmium sulfide fluorescent semiconductor nanocrystal synthesis using bacteria Escherichia coli, basidiomycete Pleurotus ostreatus and plant Linaria maroccana are reported. Morphological and optical characteristics of the synthesized nanoparticles are presented.
Key words: «green» synthesis of nanoparticles, biological synthesis of nanoparticles, phytochemical tanks, noble metal nanoparticles, bimetallic nanoparticles, semiconductor quantum dot nanoparticles, fluorescent nanocrystals of cadmium sulfide.

References:
1. Mohanpuria, P., Rana, N., and Yadav, S.: Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res., 10, 507-517 (2008).
https://doi.org/10.1007/s11051-007-9275-x
2. Tam, J.M., Tam, J.O., Murthy, A. et al.: Controlled Assembly of Biodegradable Plasmonic Nanoclusters for Near-Infrared Imaging and Therapeutic Applications. ACS Nano, 4, 2178-2184 (2010).
https://doi.org/10.1021/nn9015746
3. Burlaka, O.M., Pirko, Ya.V., Yemets, A.I., and Blume, Ya. B.: «Green» Synthesis of Metal Nanoparticles: Capacity of Biological Systems and Prospects for Development. Nanostructure Material Science, 4, 89-103 (2012) (in Ukrainian).
4. Sarwat, B.R., Ghaderi, S., Keshtgar, M., and Seifalian, A.M.: Semiconductor Quantum Dots as Fluorescent Probes for In Vitro and In Vivo Bio-Molecular and Cellular Imaging. Nano Rev., 1, 1-15 (2010).
5. Singh, S.H., Bozhilov, K., Mulchandani, A. et al.: Biologically Programmed Synthesis of Core-Shell CdSe/ZnS Nanocrystals. Chem. Commun., 46, 1473-1475 (2010).
https://doi.org/10.1039/b920688d
6. Michalet, X., Pinaud, F.F., and Bentolila, L.A.: Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics. Science, 307, 5709, 538—544 (2005).
https://doi.org/10.1126/science.1104274
7. Dahl, J.A., Maddux, B.L.S., and Hutchison, J.E.: Toward Greener Nanosynthesis. Chem. Rev., 107, 2228-2269 (2007).
https://doi.org/10.1021/cr050943k
8. Iravani, S.: Green Synthesis of Metal Nanoparticles Using Plants. Green Chem., 13, 2638-2650 (2011).
https://doi.org/10.1039/c1gc15386b
9. Krutiakov, Yu.A., Kudrinski, A.A., Olenin, A.Yu., and Lisichkin, G.V.: Synthesis and Properties of Silver Nanoparticles: Achievement and Prospects. Uspekhi Khimii, 77, 3, 242-269 (2008) (in Russian).
10. Darroudi, M., Ahmad, M.B., Zamiri, R. et al.: Time-Dependent Effect in Green Synthesis of Silver Nanoparticles. Int. J. Nanomedicine, 6, 677-681 (2011).
https://doi.org/10.2147/IJN.S17669
11. Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Brus, L.E. et al.: Fluorescence Intermittency in Single Cadmium Selenide Nanocrystals. Nature, 383, 802-804 (1996).
https://doi.org/10.1038/383802a0
12. Gaponik, N., Talapin, D.V., Rogach, A.L. et al.: Thiol-Capping of CdTe Nanocrystals: an Alternative to Organometallic Synthetic Routes. J. Phys. Chem., 106, 7177-7185 (2002).
https://doi.org/10.1021/jp025541k
13. Shankar, S.S., Rai, A., Ahmad, A., and Sastry, M.: Rapid Synthesis of Au, Ag, and Bimetallic Au Core—Ag Shell Manoparticles Using Neem (Azadirachta indica) Leaf Broth. J. Coll. Interface Sci., 275, 496-502 (2004).
https://doi.org/10.1016/j.jcis.2004.03.003
14. Song, J.Y. and Kim, B.S.: Rapid Biological Synthesis of Silver Nanoparticles Using Plant Leaf Extracts. Bioproc. Biosyst. Eng., 32, 79—84 (2009).
https://doi.org/10.1007/s00449-008-0224-6
15. Lim, J.-S., Kim, S.-M., Lee, S.-Y. et al.: Formation of Au/Pd Alloy Nanoparticles on TMV. J. Nanomater., 6, 620505-620511 (2010).
https://doi.org/10.1155/2010/620505
16. Nair, B. and Pradeep, T.: Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Cryst. Growth. Des., 2, 293-298 (2002).
https://doi.org/10.1021/cg0255164
17. Kannan, N. and Subbalaxmi, S.: Green Synthesis of Silver Nanoparticles Using Bacillus Subtillus IA751 and Its Antimicrobial Activity. Res. J. Nanosci. Nanotechnol., 1, 2, 94-97 (2011).
https://doi.org/10.3923/rjnn.2011.87.94
18. Manonmani, V. and Vimala, J.: Biosynthesis of Ag Nanoparticles for the Detection of Pathogenic Bacteria in Food. 2011 Int. Conf. Innovat., Management Service IPEDR., 14, 311 (2011).
19. Mousavi, R.A, Akhavan, S.A., and Fazeli, M.R.: Biosynthesis, Purification and Characterization of Cadmium Sulfide Nanoparticles Using Enterobacteriaceae and Their Application. Nanomater. Appl. Proper., 1, 1, 1-5 (2012).
20. Dameron, C.T., Reese, R.N., and Mehra, R.K.: Biosynthesis of Cadmium Sulphide Quantum Semiconductor Crystallites. Nature, 338, 13, 596-597 (1989).
https://doi.org/10.1038/338596a0
21. Ahmad, A., Senapati, S., Khan, M.I. et al.: Intracellular Synthesis of Gold Nanoparticles by a Novel Alkalotolerant Actinomycete, Rhodococcus sp. Nanotechnol., 14, 824 — 828 (2003).
https://doi.org/10.1088/0957-4484/14/7/323
22. Ahmad, A., Senapati, S., Khan, M.I. et al.: Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir, 19, 3550-3553 (2003).
https://doi.org/10.1021/la026772l
23. Bansal, V., Poddar, P., Ahmad, A., and Sastry, M.: Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. J. Am. Chem. Soc., 128, 11958-11963 (2006).
https://doi.org/10.1021/ja063011m
24. Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V. et al.: Biological Synthesis of Silver Nanoparticles Using the Fungus Aspergillus flavus. Mat. Lett., 61, 1413-1418 (2007).
https://doi.org/10.1016/j.matlet.2006.07.042
25. Kumar, S.A., Ayoobul, A.A., Absar, A., and Khan, M.I.: Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus, Fusarium oxysporum. J. Biomed. Nanotechnol., 3, 190-194 (2007).
https://doi.org/10.1166/jbn.2007.027
26. Arjunan, K., Murugan, K., Rejeeth, C. et al.: Green Synthesis of Silver Nanoparticles for the control of Mosquito Vectors of Malaria, Filariasis, and Dengue. Vector Borne Zoonotic Dis., 12, 3, 262-269 (2012).
https://doi.org/10.1089/vbz.2011.0661
27. Jayaseelan, C., Rahuman, A.A., Rajakumar, G. et al.: Synthesis of Pediculocidal and Larvicidal Silver Nanoparticles by Leaf Extract from Heartleaf Moonseed Plant, Tinospora cordifolia Miers. Parasitol. Res., 109, 185-194 (2011).
https://doi.org/10.1007/s00436-010-2242-y
28. Guidelli, E.J., Ramos, A.P., Zaniquelli, M.E.D., and Baffa, O.: Green Synthesis of Colloidal Silver Nanoparticles Using Natural Rubber Latex Extracted from Hevea brasiliensis. Spectrochimica Acta A, 82, 140-145 (2011).
https://doi.org/10.1016/j.saa.2011.07.024
29. Kaviya, S., Santhanalakshmi, J., and Viswanathan, B.: Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-sorbitol: Study of Antibacterial Activity. J. Nanotechnol. (2011); http://www.hindawi.com/journals/jnt/2011/152970.
30. Mallikarjuna, K., Narasimha, G., Dillip, G.R. et al.: Green Synthesis of Silver Nanoparticles Using Ocimum Leaf Extract and Characterization. Digest J. Nanomater. Biostruct., 6, 1, 181-186 (2011).
31. Marchiol, L.: Synthesis of Metal Nanoparticles in Living Plants. Italian J. Agron., 7, 3, 274-282 (2012).
https://doi.org/10.4081/ija.2012.e37
32. Anshup, A., Venkataraman, J.S., Subramaniam, C. et al.: Growth of Gold Nanoparticles in Human Cells. Langmuir, 21, 11562-11567 (2005).
https://doi.org/10.1021/la0519249
33. Satyavani, K., Ramanathan, T., and Gurudeeban, S.: Plant Mediated Synthesis of Biomedical Silver Nanoparticles by Using Leaf Extract of Citrullus colocynthisRes. J. Nanosci. Nanotechnol., 1, 2, 95-101 (2011).
https://doi.org/10.3923/rjnn.2011.95.101
34. Virkutyte, J. and Varma, R.S.: Green Synthesis of Metal Nanoparticles: Biodegradable Polymers and Enzymes in Stabilization and Surface Functionalization. Chem. Sci., 2, 837-846 (2011).
https://doi.org/10.1039/C0SC00338G
35. Shukla, R., Nune, S.K., Chanda, N. et al.: Soybeans as a Phytochemical Reservoir for the Production and Stabilization of Biocompatible Gold Nanoparticles. Small., 4, 9, 1425-1436 (2008).
https://doi.org/10.1002/smll.200800525
36. Mukherjee, P., Senapati, S., Mandal, D. et al.: Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum. Chem. Bio. Chem., 3, 461-463 (2002).
https://doi.org/10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
37. Shahverdi, A., Minaeian, S., Shahverdi, H.R. et al.: Rapid Synthesis of Silver Nanoparticles Using Culture Supernatants of Enterobacteria: a Novel Biological Approach. Proc. Biochem., 42, 919-923 (2007).
https://doi.org/10.1016/j.procbio.2007.02.005
38. Xie, J., Lee, J.Y., Wang, D.I.C., and Ting, Y.P.: Silver Nanoplates: from Biological to Biomimetic Synthesis. ACS Nano, 1, 429-439 (2007).
https://doi.org/10.1021/nn7000883
39. Li, S., Shen, Y., Xie, A. et al.: Green Synthesis of Silver Nanoparticles Using Capsicum annuum L. extract. Green Chem., 9, 852-858 (2007).
https://doi.org/10.1039/b615357g
40. Li, X., Xu, H., Chen, Zh-Sh., and Chen, G.: Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater., 1-16 (2011).
https://doi.org/10.1155/2011/270974
41. Pomogailo, A.D., and Kestelman, V.N. (2005). Metallopolymer Nanocomposites. Springer: Berlin, Heidelberg, New York.
42. He, F., Zhao, D., Liu, J., and Roberts, C.B.: Stabilization of Fe-Pd Bimetallic Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Degradation of TCE in Water. Ind. Eng. Chem. Res., 46, 29-34 (2007).
https://doi.org/10.1021/ie0610896
43. Blume, Ya.B., Pirko, Ya.V., Danilenko, I.A. et al.: Technique for Obtaining Silver and Gold Nanoparticles. Patent of Ukraine for Utility Model no. 86778 of 10.01.2014 (in Ukrainian).
44. Pirko, Ya., Danylenko, I., Kolomys, O. et al.: Phytochemical Mediated Synthesis of Silver and Gold Nanoparticles. Curr. Pharm. Biotechnol., 13, 15, 85 (2012).
45. Pirko, Ya., Danylenko, I., Kolomys, O. et al.: Synthesis of Silver Nanoparticles Using Phytoextracts from Higher Plants. Chemistry-2011: 10th Int. Conf. Lithuanian Chemists, 135 (2011).
46. Danilenko, I.A., Botvinko, A.V., Pirko, Ya.V. et al.: Synthesis and Antibacterial Properties of Silver Nanoparticles Synthesized Using Phytoextracts. Nanosize Systems: Structure, Properties, and Technologies, 472 (2013) (in Ukrainian).
47. Borova, M.M., Naumenko, A.P., Pirko, Ya.V., Krupodiorova, T.A., Yemets, A.I., and Blume, Ya.B.: Obtaining CdS Quantum Dots Using Pleurotus ostreatus. Reports of the NAS of Ukraine, 2, 153-159 (2014) (in Ukrainian).
https://doi.org/10.15407/dopovidi2014.02.153
48. Borova, M.M., Naumenko, A.P., Yemets, A.I., and Blume, Ya.B.: Stability of CdS Quantum Dots Synthesized Using Escherichia coli Bacterium. Reports of the NAS of Ukraine, 7, 145-151 (2014) (in Ukrainian).
https://doi.org/10.15407/dopovidi2014.07.145
49. Borovaya, M.N., Naumenko, A.P., Matvieieva, N.A. et al.: Biosynthesis of Luminescent CdS Quantum Dots Using Plant Hairy Root Culture. Nanoscale Res. Lett., 9 (2014).
https://doi.org/10.1186/1556-276X-9-686
50. Martínez-Castañón, G.A, Loyola-Rodríguez, J.P, and Reyes-Macías, J.F.: Synthesis and Optical Properties of Functionalized CdS Nanoparticles with Different Sizes. Superficies y vacío, 23, 4, 1-4 (2010).
51. Asaula, V.N., Mirnaia, T.A., and Yaremchuk, G.G.: Nanostructured Liquid Crystal Systems of Metal Alcanoates with CdS Nanoparticles. Nanosystems, Nanomaterials, and Nanotechnologies, 10, 1, 193-201 (2012) (in Russian).
52. Rossetti, R, Ellison, J.L, Gibson, J.M, and Brus, L.E.: Size Effects in the Excited Electronic States of Small Colloidal CdS Crystallites. J. Chem. Phys., 80, 9, 4464-4469 (1984).
https://doi.org/10.1063/1.447228
53. Sweeney, R.Y., Mao, C., and Gao, X.: Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chem. Biol., 11, 11, 1553-1559 (2004).
https://doi.org/10.1016/j.chembiol.2004.08.022