Physical Simulator of Infrared Spectroradiometer with Spatial Resolution Enhancement Using Subpixel Image Registration and Processing

1Lyalko, VІ, 1Popov, MA, 1Stankevich, SA, 1Shklyar, SV, 1Podorvan, VN, 2Likholit, NI, 2Tiagur, VM, 2Dobrovolska, CV
1Scientific Centre for Aerospace Research of the Earth, NAS of Ukraine, Kyiv
2«ARSENAL» SDP SE, State Space Agency of Ukraine, Kyiv
Nauka innov. 2015, 11(6):16-28
https://doi.org/10.15407/scin11.06.016
Section: Scientific and Technical Innovative Projects of National Academy of Sciences of Ukraine
Language: Ukrainian
Abstract: 

The mathematical and physical models of the new frame infrared spectroradiometer based on microbolometer array sensor with subpixel image registration are presented. It is planned to include the radiometer into onboard instrumentation of the future «Sich» satellite system for the land surface physical characterization by enhanced spatial resolution infrared space imagery.

Keywords: frame microbolometer array spectroradiometer, infrared satellite imaging, spatial resolution enhancement, subpixel image registration
References: 

1. Bagatospektral'ni metody dystancijnogo zonduvannja Zemli v zadachah pryrodokorystuvannja. Za red. V.I. Ljal'ko ta M.O. Popova. Kyiv: Nauk. dumka, 2006 [in Ukrainian].
2. Stankevych S.A. Vyjavlennja dodatkovyh rozpiznaval'nyh oznak ob’jektiv za rezul'tatamy bagatozonal'nogo dystancijnogo sposterezhennja v infrachervonomu spektral'nomu diapazoni. Trudy akademii'. Vyp.23. Kyiv: NAO Ukrai'ny, 1999: 92-99 [in Ukrainian].
3. Dash P., Gottsche F.-M., Olesen F.-S., Fischer H. Retrieval of land surface temperature and emissivity from satellite data: Physics, theoretical limitations and current methods. J. of the Indian Society of Remote Sensing. 2001, 29(1-2): 23-30.
http://dx.doi.org/10.1007/BF02989910
4. Baranov V.L., Vodop’jan S.V., Gryshhuk R.V. Algorytm avtomatyzovanogo ocinjuvannja spektral'nogo koeficijenta teplovogo vyprominjuvannja. Visnyk ZhDTU. 2006, N 4(39): 77-83 [in Ukrainian].
5. Kriksunov L.Z. Spravochnik po osnovam infrakrasnoj tehniki. Moskva: Sovetskoe radio, 1978 [in Russian].
6. Tang H., Li. Z.-L. Quantitative Remote Sensing in Thermal Infrared: Theory and Applications. Berlin: Springer–Verlag, 2014.
http://dx.doi.org/10.1007/978-3-642-42027-6
7. Kealy P.S., Hook S.J. Separating temperature and emissivity in thermal infrared multispectral scanner data: Implications for recovering land surface temperatures. IEEE Trans. on Geoscience and Remote Sensing. 1993, 31(6): 1155-1164.
http://dx.doi.org/10.1109/36.317447
8. Wan Z., Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing. 1996, 34(4): 892-905.
http://dx.doi.org/10.1109/36.508406
9. Popov M.A., Liholit N.I., Stankevich S.A. i dr. Obosnovanie tehnicheskogo oblika bortovogo optiko-jelektronnogo kompleksa srednego prostranstvennogo razreshenija perspektivnogo sputnika distancionnogo zondirovanija Zemli. Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2010, 2(7): 293–299 [in Russian].
10. Li Z., Li J., Jin X. et al. An objective methodology for infrared land surface emissivity evaluation. J. of Geophysical Research. 2010. V. 115. N D22: 308-322.
http://dx.doi.org/10.1029/2010JD014249
11. Snyder W.C., Wan Z., Zhang Y., Feng Y.–Z. Classification-based emissivity for land surface temperature measurement from space. Intern. J. of Remote Sensing. 1998, 19(14): 2753-2774.
http://dx.doi.org/10.1080/014311698214497
12. Hulley G.C., Hook S.J., Baldridge A.M. ASTER Land Surface Emissivity Database of California and Nevada. Geophysical Research Letters. 2008. V. 35. N L13: 401-406.
http://dx.doi.org/10.1029/2008gl034507
13. Jiménez-Muñoz J.C., Sobrino J.A., Guaner L. et al. Fractional vegetation cover estimation from Proba/CHRIS data: Methods, analysis of angular effects and application to the land surface emissivity retrieval. Proceedings of the 3rd ESA CHRIS/Proba Workshop. Frascati: ESRIN, 2005: 161-170.
14. Popov M.O., Liholit M.I., Stankevych S.A. ta in. Mikrobolometrychna matrychna kamera dal'n'ogo infrachervonogo diapazonu dlja kosmichnoi' zjomky. Tezy dopovidej XI Mizhnarodnoi' naukovo-tehnichnoi' konferencii' «Pryladobuduvannja: stan i perspektyvy». Kyiv: NTUU «KPI», 2012 [in Ukrainian].
15. Liang S. An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(2): 264-274.
http://dx.doi.org/10.1109/36.905234
16. Payan V., Royer A. Analysis of Temperature Emissivity Separation (TES) algorithm applicability and sensitivity. Intern. J. of Remote Sensing. 2004, 25(1): 15-37.
http://dx.doi.org/10.1080/0143116031000115274
17. Liu H., Zhang C., Ye F., Zhang J. Temperature and emissivity separation methods based on TASI data. Proceedings of International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2013). Nanjing: Atlantis Press, 2013: 685-688.
18. Panfilov A.S., Burdakin A.A., Gavrilov V.R. i dr. Kachestvo radiometricheskih dannyh opticheskoj apparatury nabljudenija Zemli i postroenie rossijskoj sistemy obespechenija edinstva radiometricheskih izmerenij jetoj apparaturoj. Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2012, 9(2): 152-159 [in Russian].
19. Popov M.O., Stankevych S.A., Zjelyk Ja.I. ta in. Kalibruvannja spektral'noi' chutlyvosti sensora bagatospektral'noi' suputnykovoi' systemy «Sich-2» za nazemnymy spektrometrychnymy vymirjuvannjamy: poperedni rezul'taty. Kosmichna nauka i tehnologija. 2012, 18(5): 59-65 [in Ukrainian].
20. Liholit N.I., Tjagur V.M., Haritonenko E.V. IK-kamera kosmicheskogo bazirovanija s mikrobolometricheskoj matricej. Materiali XI Mizhnarodnoi naukovo-tehnichnoi konferencii «Avia–2013». Kyiv: NAU, 2013: 61-63 [in Russian].
21. Balyko I.A., Levashov S.V., Holodov D.V., Balyko A.K. Reshenie sistemy linejnyh uravnenij s izbytochnym chislom uravnenij. Materialy Mezhdunarodnoj nauchno-tehnicheskoj konferencii «Fundamental'nye problemy radiojelektronnogo priborostroenija» (INTERMATIC-2012). Ch. 7. Moskva: MIRJeA, 2012 [in Russian].
22. Super-Resolution Imaging. Ed. by P. Milanfar. Boca Raton: CRC Press, 2010.
23. Stankevich S.A., Shklyar S.V., Tyagur V.M. Subpixel resolution satellite imaging technique. Proceedings of the Ninth International Conference on Digital Technologies (DT’2013). Žilina: University of Žilina, 2013: 81-84.
http://dx.doi.org/10.1109/DT.2013.6566286
24. Stankevych S.A., Shkljar S.V., Lubs'kyj M.S. Pidvyshhennja prostorovoi' rozriznennosti aeroznimannja na osnovi subpiksel'noi' rejestracii' zobrazhen'. Zbirnyk naukovyh prac' Derzhavnogo naukovo-doslidnogo instytutu aviacii'. Vyp.9(16). Kyiv: DNDIA, 2013: 110-117 [in Ukrainian].
25. Bannore V. Iterative-Interpolation Super-Resolution Image Reconstruction: A Computationally Efficient Technique. Berlin: Springer, 2009.
http://dx.doi.org/10.1007/978-3-642-00385-1
26. Popov M.A., Stankevich S.A., Shkljar S.V. Algoritm povyshenija razreshenija subpiksel'no smeshhjonnyh izobrazhenij. Matematichni mashini ta sistemi. 2015, N 1: 29-36 [in Russian].
27. Popov M.A., Stankevich S.A., Shklyar S.V. et al. Functional model of the new multiband infrared radiometer for “Sich” Earth observation satellite system. Tezy dopovidej 14-oi' Ukrai'ns'koi' konferencii' z kosmichnyh doslidzhen'. Uzhgorod: Instytut elektronnoi' fizyky NAN Ukrai'ny, 2014: 72.
28. Tatsumi K., Sakuma F., Kikuchi M. et al. A compact thermal infrared imaging radiometer with high spatial resolution and wide swath for a small satellite using a large format uncooled infrared focal plane array. Proceedings SPIE 9241, Sensors, Systems, and Next-Generation Satellites XVIII. Amsterdam: SPIE, 2014: 92411F.
29. Pat. # 109181, Ukrai'na, MPK6 G01C 3/08, G01V 8/20, G06K 9/00, G06K 9/32, H04N 5/225. Sposib pidvyshhennja prostorovoi' rozriznennosti pry dystancijnij zjomci z vykorystannjam subpiksel'noi' rejestracii' zobrazhen' ta prystrij dlja jogo zdijsnennja. M.I. Lyholit, V.I. Ljal'ko, M.O. Popov, S.A. Stankevych, V.M. Tjagur, E.V. Harytonenko [in Ukrainian].
30. Popov M.A., Stankevych S.A., Tjagur V.M. y dr. Povishenye prostranstvennogo razreshenyja putem subpyksel'noj obrabotky yzobrazhenyj. Materialy Vos'moi' Mizhnarodnoi' naukovo-tehnichnoi' konferencii' «Problemy telekomunykacij–2014» (PT-2014). Kyiv: ITS NTUU «KPI», 2014: 57-60 [in Ukrainian].
31. Stankevych S.A. Statystychnyj pidhid do vyznachennja porogovoi' moduljacii' cyfrovyh aerokosmichnyh zobrazhen'. Kosmichna nauka i tehnologija. 2005, 11(3/4): 81-84 [in Ukrainian].
32. Stankevych S.A., Shkljar S.V. Udoskonalenyj algorytm vyznachennja perehidnoi' funkcii' na cyfrovomu aerokosmichnomu zobrazhenni. Uchenie zapysky Tavrycheskogo nacyonal'nogo unyversyteta ym. V.Y. Vernadskogo. 2005. T. 18(57). N 2: 97-102 [in Ukrainian].
33. Ljal'ko V.I., Popov M.O., Stankevych S.A. ta in. Fizychna model' infrachervonogo spektroradiometra iz subpiksel'nym pidvyshhennjam prostorovoi' rozriznenosti. Materialy Ukrai'ns'koi' naukovo-tehnichnoi' konferencii' «Aviakosmichne pryladobuduvannja». Kyiv: KP SPB «Arsenal», 2014: 33-35 [in Ukrainian].
34. Sabol Jr. D.E., Gillespie A.R., Abbott E., Yamada G. Field validation of the ASTER Temperature–Emissivity Separation algorithm. Remote Sensing of Environment. 2009, 113(11): 2328-2344
http://dx.doi.org/10.1016/j.rse.2009.06.008