Processing Vegetable Waste оf Different Origin

1Tkachenko, TV, 1Yevdokymenko, VO, 1Kamenskyh, DS, 2Filonenko, MM, 3Vakhrin, VV, 1Kashkovsky, VI
1Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
2Dragomanov National Pedagogical University
3LLC "Polycrystal"
Nauka innov. 2018, 14(2):51-66
https://doi.org/10.15407/scin14.02.051
Section: Research and Engineering Innovative Projects of the National Academy of Sciences of Ukraine
Language: Ukrainian
Abstract: 
Introduction. Biomass is primarily used as energy source, however, it is a valuable chemical raw material. As of today, there are about 20 basic compounds that are sufficient to provide a wide range of chemical products can be obtained from vegetable raw materials. 
Problem Statement. Despite a huge capacity of vegetable waste recycling for the industrial needs, so far research in this area has received a little attention in Ukraine.
Purpose. To create an effective technological solution that ensures a comprehensive, waste-free processing of vegetable waste to produce marketable products.
Materials and Methods. The methods of organic solvent pulping, explosion autohydrolysis, heterogeneous catalysis, and numerous analytical techniques (technical, elemental, structural analysis) have been used for the study.
Results. The autohydrolysis treatment of plant material has been shown to enable destroying the original compact and strong structure into individual components. For microcrystalline cellulose (MCC), total conversion increases by 6-18% with a high crystallinity index (CI) of 0.81. As a result of alkaline treatment of rice husks, the inorganic component has been established to be "extracted" and to decrease in content. This is accompanied by partial delignification and a simultaneous increase in the content of cellulose. Using the method of organic solvent pulping of silica-free husk, the maximum amount of MCC (100% theoretically possible yield) with a CI of 0.77, a polymerization of 560.5, and a purity of 99.3% has been extracted. Silicon dioxide with a purity of, at least, 99.99% has been obtained.
Conclusions. A way for obtaining cellulose from vegetable waste by the organic solvate pulping method has been described and the effect of pretreatment of lignocellulose biomass on the physical and chemical properties of obtained cellulose has been established.
Keywords: cellulose, explosion autohydrolysis, lignin, microcrystalline cellulose, silicon dioxide
References: 
1. Kuznetsov, B. N., Sharypov, V. I., Grishechko, L. I., Celzard, A. (2013). Integrated catalytic process for obtaining liquid fuels from renewable lignocellulosic biomass. Kinetics and Catalysis, 54(3), 344-352 [in Russian].
https://doi.org/10.1134/S0023158413030105
2. Ikawo O. E. (2013). Conversion of agrowastes to bioproducts. Lagos. 56 p.
3. Supitcha Rungrodnimitchai, Wachira Phokhanusai, Natthapong Sungkhaho. (2009). Preparation of Silica Gel from Rice Husk Ash Using Microwave Heating. Journal of Metals, Materials and Minerals, 19(2), 45-50.
4. Zemnukhova, L. A., Budaeva, V. V., Fedorishcheva, G. A., Kaydalova, T. I., Kurilenko, L. N., Shkorina, E. D., Ilysov, S. G. (2009). Inorganic components of straw and hull of an oats. Himija rastitel'nogo syr'ja (Chemistry of plant raw material), 1, 147-152 [in Russian].
5. Vurasko, A. V., Driker, B. N., Mozyreva, E. A., Zemnukhova, L. A., Galimova, A. R., Gulemina, N. N. (2006). Resursosberegayushchaya tekhnologiya polucheniya tsellyuloznykh materialov pri pererabotke otkhodov sel’skokhozyaystvennykh kul’tur. Himija rastitel'nogo syr'ja (Chemistry of plant raw material), 4, 5-10 [in Russian].
6. Jose James, M. Subba Rao. (1986). Silica from rice husk through thermal decomposition. Thermochimica Acta, 97, 329-336.
https://doi.org/10.1016/0040-6031(86)87035-6
7. Pat. GB 1508825. Refratech Albert Gmbh. A method of production low-carbon, white husk ash. 
8. Soroka, P. I., Tertyshnyj, О. А., Smirnova, E. S., Gridneva, T. V. (2006). Poluchenie soedineniy kremniya iz othodov risovogo proizvodstva. Naukovi pratsi Odes’koji nats. akademii harchov. tekhnologiy, 2(28), 4-10 [in Russian].
9. Matkovsky, P., Yarulin, R. (2011). Silica in human world. The Chemical Journal, 1, 36-39.
10. Gridneva, T. V., Soroka, P. I., Tertyshnyj, О. А., Ryabik, P. V., Smirnova, E. S. (2010). Poluchenie dioksida kremniya iz risovoy sheluhi. Ekologichni aspekty ta resursozberigayuchi technologii, 3, 100-102 [in Russian].
11. Koz’mina, E. P. (еd.). (1976). Ris i ego kachestvo. Moskva: Kolos [in Russian].
12. Sergienko, V. I., Zemnukhova, L. A., Egorov, A. G., Shkorna, E. D., Vassilynk, N. S. (2004). Renewable sources of chemical raw materials& complex processing of the wastes of rice and buckwheal Russian chem. j. (of Russian chem. Society named after D. I. Mendeleev). XLVII(3), 116-124 [in Russian].
13. Tsoi, E. A. (2015). Silicon containing material from rice straw: compound, structure and properties. PhD (Ecol.) Vladivostok [in Russian].
14. Haoran Chen. (2013). Biogenic silica nanoparticles derived from rice husk biomass and their applications.  A dissertation submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy with a Major in Materials Science, Engineering, and Commercialization. 197 p.
15. Andrievskii, R. A. (1995). Silicon nitride: synthesis and properties. Uspekhi Khimii, 64(4), 311-329 [in Russian].
https://doi.org/10.1070/RC1995v064n04ABEH000151
16. Kamenskyh, D. S., Tkachenko, Т. V., Yevdokymenko, V. О., Kashkovskiy, V. І. (2015). Explosive autohydrolysis of pentosan-containing raw material. Catalysis and Petrochemistry, 24, 90-95 [in Ukrainian].
17. Tigunova, O. O., Beiko, N. E., Kamenskyh, D. S., Tkachenko, T. V., Yevdokymenko, V. O., Kashkovskiy, V. І., Shulga, S. M. (2016). Lignocellulosic Biomass after Explosive Autohydrolysis as Substrate for Butanol. Biotechnologia Acta, 9(4), 28-34.
https://doi.org/10.15407/biotech9.04.028
18. Kuznetsov, B. N., Taraban'ko, V. E., Kuznetsova, S. A. (2008). New catalytic methods for obtaining cellulose and other chemical products from vegetable biomass. Kinetics and Catalysis, 49(4), 517-526.
https://doi.org/10.1134/S0023158408040101
19. Kuznetsov, B. N., Chesnokov, N. V., Garyntseva, N. V., Yatsenkova, O. V. (2013). Integrated catalytic processing of aspen wood into liquid and solid biofuels. J. Siber. Fed. Univ. Chem., 3, 286-298 [in Russian].
20. GOST 26177-84. Fodder, mixed feeds. Method for determination of lignin. 3 p. [in Russian].
21. Obolenskaya, A. V., El’nitskaya, Z. P., Leonovich, A. A. (1991). Laboratornye raboty po khimii drevesiny i tsellyulozy [Laboratory Works on Wood and Cellulose Chemistry]. Moskva [in Russian]. 
22. Sunkyu Park, John O. Baker, Michael E. Himmel, Philip A. Parilla and David K. Johnson. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3(10). URL: http://www.biotechnologyforbiofuels.com/content/3/1/10 (Last accessed: 01.11.2017).
23. Baryshnikov, S. V., Sharypov, V. I., Zhyzhaev, A. M., Beregovtsova, N. G., Kuznetsov, B. N. (2012). Variation a Structural Order of Aspen Wood During its Mechanochemical Activation and Hydrilysisа. J. Siber. Fed. Univ. Chem., 2(3), 120-127 [in Russian].
24. Danilov, V. G., Yatsenkova, O. V., Kuznetsov, B. N. (2012, October). Obtaining of the microcrystalline cellulose from steam-explotion aspen wood. Lesnoy i himichesky kompleksy – problemy i resheniya. Sbornyk statey po materialam Vserossiyskogoy nauchno-prakticheskoy konferenchii. 80-84 [in Russian].
25. Golyazimova, O. V., Politov, A. A., Lomovsky, O. I. (2009). Intensification of raw material grinding with chemical treatment. Himija rastitel'nogo syr'ja (Chemistry of plant raw material), 2, 53-57 [in Russian].
26. Shevchuk, O. M., Zil’bergleit, М. А., Shishakov, E. P. (2013). The X-ray analysis of sulfate cellulose from different manufacturers. Himija rastitel'nogo syr'ja (Chemistry of plant raw material), 3, 43-47 [in Russian]. 
27. Nicoleta Terinte, Roger Ibbett, Kurt Christian Schuster. (2011). Overviewon native cellulose and microcrystalline cellulose. I Structure studied by X-ray diffraction (WAXD): comparison betweenmeasurement techniques. Lenzinger Berichte, 89, 118-131.
28. Kushnir, Е. J., Autlov, S. А., Bazarnova, N. G. (2014). Preparation of microcrystalline cellulose directly from wood under microwave irradiation. Himija rastitel'nogo syr'ja (Chemistry of plant raw material), 2, 41-50 [in Russian].
29. Bazarnova, N. G., Karpova, Е. V., Katrakov, I. B., Markin, V. I., Mikushina, I. V., Ol’hov, J. A., Khudenko, S. V. (2002). Analysis of wood and it’s derivative. Barnaul [in Russian].
30. Kuznetsov, B. N., Sudakova, I. G., Garyntseva, N. V., Ivanchenko, N. M. (2013). Abies wood delignification by hydrogen peroxide at mild conditions in the presence of sulfuric acid catalyst. J. Siber. Fed. Univ. Chem., 4(6), 361-371 [in Russian].
31. Levdansky, V. А., Levdansky, А. V., Kuznetsov, B. N. (2014). Ecology safe method of obtaining from firwood the cellulosic product with high content of alfa-cellulose. Himija rastitel'nogo syr'ja (Chemistry of plant raw material), 2, 35-40 [in Russian]
32. Xinsheng Wang, Zhenlin Lu, Lei Jia, Jiangxian Chen. (2016). Physical Properties and Pyrolysis Characteristics of Rice Husks in Different Atmosphere Results in Physics, 6, 866-868.
33. Autlov, S. А., Bazarnova, N. G., Kushnir, Е. J. (2013). Preparation of microcrystalline cellulose directly from wood under microwave irradiation. Himija rastitel'nogo syr'ja (Chemistry of plant raw material), 3, 33-41 [in Russian].
34. Taraban’ko, В. Е., Koropachinskaya, N. В., Kudryashev, А. В., Pervyshina, E. N., Kuznetsov, B. N., Polyakov, S. V., Zolotuhin, V. N. (1998). Investigation of wheat straw’s treatment to aromatic aldehyde and levulinic acid. Himija rastitel'nogo syr'ja (Chemistry of plant raw material), 3, 59-64 [in Russian].
35. Gogotov, A. F., Rybal'chenko, N. A., Makovskaya, T. I., Babkin, V. A. (1996). Catalytical nitrobenzene oxidation of lignins. Russian Chemical Bulletin, 45(12), 2854-2857.
https://doi.org/10.1007/BF01430660
36. Taraban'ko, V. E., Koropatchinskaya, N. V., Kudryashev, A. V., Kuznetsov, B. N. (1995). Influence of lignin origin on the efficiency of the catalytic oxidation of lignin into vanillin and syringaldehyde. Russian Chemical Bulletin, 44(2), 367-371.
https://doi.org/10.1007/BF00702154
37. Kaygorodov, К. L., Taraban’ko, V. Е., Chelbina, Yu. V., Iljin, A. A., Koropachinskaya, N. V. (2012, November). Pererabotka othodov proizvodstva biotopliva v vanalin I drugie produkty tonkogo organicheskogo sinteza. Mater. vser. konf. «Khimiya i Khimicheskaya technologiya: dostigeniya i perspektivy». Kemerovo [in Russian].
38. Patent application for invention of Ukraine № а 201706242 Yevdokymenko V. O., Kamenskyh D. S., Kashkovskiy V. І., Vakhrin V. V. Method of obtaining of the amorphous silicon dioxide from rice husk [in Ukrainian].