Field Type Ion Injector

1Vozny, VI, 1Storizhko, VYu., 1Miroshnichenko, VI, 1Tokman, VV, 1Mironets, Ye.A, 1Batura, Ye.O
1Institute of Applied Physics, NAS of Ukraine, Sumy
Nauka innov. 2010, 6(5):72-76
https://doi.org/10.15407/scin6.05.072
Section: Scientific Basis of Innovation Activity
Language: Russian
Abstract: 
To improve the spatial resolution of FIB systems, field type ion injector has been developed. Measurements of the injector parameters are performed on the high-vacuum stand with a residual pressure about 5 ⋅ 10-7 Pa. Ion injector consists of a needle-in-capillary type gas field ion source, focusing einzel lens and compact Wien filter with permanent magnets. The field ion source design provides the possibility of cooling the tungsten needle to a liquid nitrogen temperature. Currentvoltage characteristics of the ion source operating at room temperature have been measured. Ion field emission current up to (1-5)•10-12 A at 2-5 kV emission voltage is obtained.
Keywords: brightness, emission, focused ion beam, gas field ion source
References: 
1. Szymanski R., Jamieson D.N. Ion source brightness and nuclear microprobe applications. Nucl. Instrum. Meth. B. 1997. V. 130. P. 80-85.
https://doi.org/10.1016/S0168-583X(97)00268-1
2. Jamieson D.N. New generation nuclear microprobe systems. 7 Intern. Conference on Nuclear Microprobe Technology and Applications. France. 10 September. 2000. MF-01. P. 1-16.
3. Lejeune C. and Aubert J. Emittance and brightness: definitions and measurements. Advances in Electronics and Electron Physics. part 13A. Septier: New York, 1980. P. 159-259.
4. Storizhko V.E., Ponomarev A.G. et al. The Sumy scanning nuclear microprobe: Design features and first tests. Nucl. Instrum. Meth. B. 2007. V. 260. P. 49-54.
https://doi.org/10.1016/j.nimb.2007.01.250
5. Legge G.J.F., Moloney G.R., Colman R.A. and Allan G.L. High velocity ion microprobes and their source requirements. Rev. Sci. Instrum. 1996. V. 67. No. 3. P. 909-914.
https://doi.org/10.1063/1.1147231
6. Bell A.E., Jousten K. and Swanson L.W. High-field ion sources. Rev. Sci. Instrum. 1990. V. 61. No. 1. P. 363-365.
https://doi.org/10.1063/1.1141294
7. Orloff J.H. and Swanson L.W. Study of a field-ionization source for microprobe applications. J. Vac. Sci. Technol. 1975. V. 12. P. 1209-1213.
https://doi.org/10.1116/1.568497
8. Tondare V.N. Quest for high brightness, monochromatic noble gas ion sources. J. Vac. Sci. Technol. A. 2005. V. 23. No. 6. P. 1498-1508.
https://doi.org/10.1116/1.2101792
9. Edinger K., Yun V., Melngailis J., Orloff J., Magera G. Development of a high brightness gas field ion source. J. Vac. Sci. Technol. B. 1997. V. 15. No. 6. P. 2365-2368.
https://doi.org/10.1116/1.589648
10. Konishi M., Takizawa M. and Tsumori T. Characteristics of a helium field ion gun. J. Vac. Sci. Technol. B. 1988. V. 6. P. 498-501.
https://doi.org/10.1116/1.584051
11. Salancon E., Hammadi Z., Morin R. A new approach to gas field ion sources. Ultramicroscopy. 2003. V. 95. P. 183-188.
https://doi.org/10.1016/S0304-3991(02)00315-7
12. Mikhailovskij I.M., Wanderka N., Storizhko V. et all. A new approach for explanation of specimen rupture under high electric field. Ultramicroscopy. 2009. V. 109. P. 480-485.
https://doi.org/10.1016/j.ultramic.2008.12.003
13. Muller E.W., Tsong T.T. Field Ion Microscopy, Principles and Applications. Elsevier: New York, 1969. P. 314.
14. Korol' Je.N., Lobanov V.V, Nazarenko V.A., Pokrovskij V.A. Fizicheskie osnovy polevoj mass-spektrometrii. Kyiv: Nauk. dumka, 1978 [in Russian].