Interaction of Magnetite Nanaparticles with Culture of Alveolar Macrophages at Different Protein Concentrations

1Kiroshka, VV, 1Samchenko, II, 2Nadutov, VM, 2Perekos, AYe., 2Voynash, VZ, 1Bondarenko, TP
1Institute for Problems of Cryobiology and Cryomedicine, NAS of Ukraine, Kharkiv
2G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, Kyiv
Nauka innov. 2011, 7(6):44-49
Section: Scientific Basis of Innovation Activity
Language: Russian
The interactions of magnetite (Fe3O4) nanoparticles within the concentration range 0.06÷1.8 mg/ml with the culture of alveolar macrophages in presence of 10 and 20% FBS were comparatively analyzed. It has been established that the rise in protein content in incubation medium resulted in increase of nanoparticle number able to interact with cells.
Keywords: cell culture, cytotoxicity, magnetite (Fe3O4) nanoparticles
1. Pershina A.G., Sazonov A.Je., Mil'to I.V. Ispol'zovanie magnitnyh nanochastich v biomedicine. Bjulleten' sibirskoj mediciny. 2008. No 2. S. 70-77 [in Russian].
2. Pinto-Alphandary H., Andremont А., Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int. J. Antimicrob Agents. 2000. No 13. Р. 155-168.
3. Vasil'ev A.E. Nanonositeli lekarstvennyh veshhestv. Novaja apteka. 2003. No 1. S. 64-67 [in Russian].
4. Aggarwal P., Hall J.B., McLeland Ch.B. et al. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009. No 61. P. 428-437.
5. Dobrovolskaia M., Aggarwal P., Hall J. et al. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 2008. 5(4): 487-495.
6. Caruntu D., Caruntu G., Chen Y. et al. Synthesis of variable-sized nanocrystals of Fe3 O4 with high surface reactivity. Chemistry of materials. 2004. 16(25): 5527-5534.
7. Iveronova V.I., Revkevich G.P. Teorija rassejanija rentgenovskih luchej. Moskva: Izd-vo MGU, 1972 [in Russian].
8. Beduneau Ar., Ma Zhiya. et al. Facilitated monocyte-macrophage uptake and tissue distribution of super parmagnetic iron-oxide nanoparticles. Nanoparticles and Mo nocytes PLoS O. 2009. 4(2): 342-354.
9. Protocol of Amendment to the European Convention for the protection of Vertebrate Animals used for the Experimentation and other Scientific Purposes. Strasbourg. 1998.
10. Men'shikov V.V. Laboratornye metody issledovanija v klinike: Spravochnik. Moskva: Medicina, 1987 [in Russian].
11. Fotakis G., Timbrell J. A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters. 2006. No 160. С. 171-177.
12. Ehrenberg M., Friedman A., Finkelstein N. et al. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials. 2009. No 30. P. 603-610.
13. Alberola A. P., Rädler J.O. The defined presentation of nanoparticles to cells and their surface controlled uptake. Biomaterials. 2009. No 30. P. 3766-3770.
14. Lundqvist M.,, Johannes Stigler, Giuliano Elia et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS. 2008. 105(38): 14265-14270.
15. Kooten Th. G., Hetty T. Spijker, Henk J. Busscher Plasmatreated polystyrene surfaces: model surfaces for studying cell—biomaterial interactions. Biomaterials. 2004. No 25. P. 1735-1747.