Geoinformation Service for Flood Monitoring Using Satellite Data

1Skakun, SV
1Space Research Institute, NASU-NSAU, Kyiv
Nauka innov. 2010, 6(4):29-36
Section: Scientific and Technical Innovative Projects of National Academy of Sciences of Ukraine
Language: Ukrainian
The results of the scientific and technological project of NAS of Ukraine on the development of geoinformation services for flood monitoring for Ukraine and other regions using satellite data are presented. The services are run in operational mode and provide automatic acquisition and processing of satellite data, and delivery of digital maps through the Internet. The intellectual methods for data processing, namely neural networks, were based into geoinformation services.
Keywords: disaster management, distributed system, geospatial data processing, information technology
1. Scheuren J-M., le Polain de Waroux O., Below R., et al. Annaul Disaster Statistical Review - The Number and Trends 2007. Center for Research of the Epidemiology of Disasters (CRED), Jacoffsaet Printers, Melin, Belgium. 2008.
2. Ulander L.M.H. Radiometric slope correction of synthetic-aperture radar images. IEEE Trans. Geosci. Remote Sensing. 1996. Vol. 34. P. 1115-1122.
3. Cossu R., Brito F., Fusco L., et al. Global automatic or thorectification of ASAR products in ESRIN GPOD. 2007 ESA ENVISAT Symposium, Montreux Switzerland. 23-27 April 2007.
4. Leberl F. Interpolation in Square Grid DTM. The ITC Journal. 1973.
5. Schut G.H. Review of Interpolation Methods for Digital Terrain Models. Canadian Surveyor. 1976. 30(5): 389-412.
6. Petrie G., Kennie T.J.M. Terrain Modelling in Surveying and Civil Engineering. Computer-Aided Design. 1987. 19(4): 171-187.
7. Davis D.M., Downing J., Zoraster S. Algorithms for Digital Terrain Data Modeling. Technical Report DAAK70-80-C-0248, U.S. Army Engineer Topographic Laboratories, Fort Belvoir, Virginia, 1982.
8. ASAR Product Handbook.
9. Curlander J.C., McDonough R.N. Synthetic Aperture Radar: Systems and Signal Processing. Wiley Series in Remote Sensing. 1991. ISBN: 0-471-85770X.
10. Sheng Y., Alsdorf D.E. Automated georeferencing and orthorectification of Amazon Basin-wide SAR Mosaics using SRTM DEM Data. IEEE Trans. Geoscience and Remote Sensing. 2005. 43(8): 1929-1940.
11. Pierce L., Kellndorfer J., Ulaby F. Practical SAR Orthorectification. IGARSS. 1996. 4. P. 2329-2331.
12. Kropatsch W.G., Strobl D. The Generation of SAR Layover and Shadow Maps From Digital Elevation Models. IEEE Transactions On Geoscience and Remote Sensing. 1990. 28(1).
13. Haykin S. Neural Networks: A Comprehensive Foundation. Upper Saddle River, New Jersey: Prentice Hall, 1999.
14. Kussul N., Shelestov A., Skakun S. Grid System for Flood Extent Extraction from Satellite Images. Earth Science Informatics. 2008. 1(3): 105-117.
15. Kussul N., Shelestov A., Skakun S. Intelligent Computations for Flood Monitoring. International Book Series «Advanced Research in Artificial Intelligence» (ed. Markov K., Ivanova K., Mitov I.). 2008. 2. P. 48-54.
16. Kussul' N.N., Lupjan E.A., Shelestov A.Ju. i dr. Nejrosetevoj metod monitoringa zatoplennyh territorij s ispol'zovaniem radiolokacionnyh sputnikovyh dannyh. Issledovanie Zemli iz kosmosa. 2008. 4: 29-35 [in Russian].
17. Skakun S.V. Nejromerezhevyj metod kartografuvannja povenej na osnovi suputnykovyh zobrazhen'. Z-k naukovyh prac' DonNTU. Ser. «Informatyka, kibernetyka ta obchysljuval'na tehnika». 2009. Vyp. 10 (153): 115-120 [in Ukrainian].
18. Rosich B., Meadows P. Absolute calibration of ASAR level 1 products generated with PF-ASAR. ESA-ESRIN, ENVI-CLVLEOPG-TN-03-0010, 07 October 2004.
19. Kohonen T. Self-Organizing Maps. Series in Information Sciences, Vol. 30. Springer, Heidelberg, 1995.
20. Gonzalez R.C., Woods R.E. Digital Image Processing. Prentice Hall: Upper Saddle River, New Jersey, 2002.