Photo- and Hydrogen Energetics: Possibilities and Achievements

1Prokhorov, IYu., 1Akimov, GYa.
1O.O. Galkin Donetsk Physical-Technical Institute, NAS of Ukraine, Donetsk
Nauka innov. 2009, 5(6):11-24
https://doi.org/10.15407/scin5.06.011
Section: Scientific and Technical Innovative Projects of National Academy of Sciences of Ukraine
Language: Russian
Abstract: 
Prospects and feasibility study of alternative power production based on long-term high-capacity storage of photoelectric energy are presented. Urgent research and innovation areas are determined. Foreign examples of successful commercialization of novel power systems using solid cationic electrolytes based beta aluminum oxides are provided.
Keywords: beta alumina, hydrogen economy, sodium, solid electrolytes
References: 
1. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. National Research Council and National Academy of Engineering. Washington, DC, USA: National Academies Press, 2004.
2. Oficijnyj veb-sajt Ministerstva palyva ta energetyky Ukrai'ny (http://mpe.kmu.gov.ua). Informacij na dovidka pro osnovni pokaznyky rozvytku galuzej palyvno-energetychnogo kompleksu Ukrai'ny. 19.02.2008 [in Ukrainian].
3. Weisz P.B. Basic choices and constraints on long-term energy supplies. Physics Today. 2004, no 7: 47-52.
https://doi.org/10.1063/1.1784302
4. Prajs-list na oborudovanie dlja vozobnovljaemoj jenergetiki. OOO «IntelCentr», Kievskaja obl., 2008. www.intelcenter.com.ua [in Russian].
5. Bedi E., Olesen G.B. and Myles R. Solar energy. In: DIERET: Distant Internet Education on Renewable nergy Technologies. INFORSE: International Network for Sustainable Energy. Europe, May 2005. www.inforse.org
6. Sharma D., Kitano H. and Sagara K. Phase change materials for low temperature solar thermal applications. Res. Rep. Fac. Eng. Mie. Univ. 2004. Vol. 29. P. 31-64.
7. Customer-Side Applications of NGK’s NAS® Battery System. NGK Insulators, Ltd (Japan). CEC/NYSERDA Emerging Technologies Conference. October, 2006.
8. Ideal Homes provides energy efficient homes at a time when efficiency is greatly needed: Press Release. Ideal Homes Inc., Oklahoma, U.S.A., 2005. www.ideal-homes.com
9. Barnes P.R.F., Randeniya L.K., Murphy A.B. et al. TiO2 photoelectrodes for water splitting: Carbon doping by fla me pyrolysis? Dev. Chem. Eng. Mineral Process. 2006, 14(1/2): 51-70.
https://doi.org/10.1002/apj.5500140105
10. Tandem cell for water cleavage by visible light: U.S. Patent 6,936,143. Graetzel M., Augustynski J. Publ. August 30, 2005.
11. Khan, S.U.M., Al-Shahry, M. and Ingler, W.B., Jr. Efficient photochemical water splitting by a chemica lly modified n-TiO2. Science. 2002. Vol. 297. P. 2243-2245.
https://doi.org/10.1126/science.1075035
12. Method of storing hydrogen in intimate mixtures of hyd rides of magnesium and other metals or alloys. US Patent 4,389,326. Tanguy B., Soubeyroux J.-L. et al. Publ. June 21, 1983.
13. DiPietro J.P. and Skolnik E.G. Analysis of the Sodium Hydridebased Hydrogen Storage System being de ve lo ped by PowerBall Technologies, LLC. Proc. 2000 DOE Hyd rogen Program Review. October 29, 1999. NREL/CP-570-28890. P. 860-888.
14. Hydrogen storage, distribution, and recovery system. U.S. Patent 7,169,489 B2. Redmond S.D. Publ. Jan. 30, 2007.
15. Sodium-sulphur secondary battery. U.S. Patent 6,245,455. Kohno K., Kolke S., Doi T., Kamo T. et al. Publ. June 12, 2001.
16. Sudworth J.L., Barrow P., Dong W., Dunn B., Farrington G.C., Thomas J.O. Toward commercialization of the beta-alumina family of ionic conductor. MRS Bull. 2000. Vol. 25, No. 3. P. 22-26.
https://doi.org/10.1557/mrs2000.14
17. Copper-based energy storage device and method: U.S. Patent Application US 2008. 0145746 A1. Zappi G.D., Iacovangelo C.D.; General Electric Co. Publ. June 19, 2008.
18. Fuel cell with hydronium beta-alumina electrolyte: U.S. Patent 4,032,694. Dubin R.R. and Roth W.L.; General Electric Co. Publ. June 28, 1977.
19. Prohorov I.Ju. Rol' holodnogo izostaticheskogo pressovanija v tehnologii beta-glinozemov. Sovremennoe materialovedenie: dostizhenija i problemy: Tez. dokl. mezhd. konf., Kiev, 26-30 sent. 2005. Kiev: IPM NANU, 2005. S. 28-29 [in Russian].
20. Prohorov I.Ju. Termostojkost' oksidnyh keramicheskih materialov. Ogneupory i teh. keramika. 2002, no 5: 37-47 [in Russian].
21. Prohorov I.Ju., Akimov G.Ja. Tehnologija i perspektivy kationnyh jelektrolitov na osnove β-glinozemov. Ogneupory i teh. keramika. 2008, no 1: 18-28 [in Russian].
22. Prohorov I.Ju. Nespekaemye poroshkovye jelektrolity dlja vodorodnoj jenergetiki. Tez. dokl. mezhd. konf. HighMatTech 2007, Kiev, 15–19 okt. 2007. Kiev: IPM NANU, 2007. S. 209 [in Russian].
23. Prohorov I.Ju., Akimov G.Ja. Poluchenie i svojstva nespekaemyh poroshkovyh vodorodnyh jelektrolitov na osnove beta-glinozemov. Vodorodnaja jekonomika i vodorodnaja obrabotka materialov: Tr. 5-j Mezhd. konf. VOM-2007, Doneck, 21-25 maja 2007. T. 1. Doneck: DonNTU, 2007. S. 308-311 [in Russian].
24. Prohorov I.Ju., Akymov G.Ja. Tehnologii' ta doslidzhennja gidroksonijevyh elektrolitiv na osnovi beta-glynozemu dlja prystroi'v vodnevoi' energetyky (tretij etap). Fundamental'ni problemy vodnevoi' energetyky: Tez. dop. nauk. zvit. sesii', Kyi'v, 12-13 lyst. 2008. Kyi'v: IPM NANU, 2008 [in Ukrainian].