Activity of Bacteria Consortium in Soy Agrocenoses on Chernozems Polluted with Heavy Metals in Prydniprovia Region

1Zaets, IYe., 1Voznyuk, TN, 1Kovalchuk, MV, 2Kramarev, CM, 1Kozyrovska, NO
1Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv
2Institute of Grain Farming, UAAS, Kyiv
Nauka innov. 2007, 3(6):26-37
https://doi.org/10.15407/scin3.06.026
Section: Scientific and Technical Innovative Projects of National Academy of Sciences of Ukraine
Language: Ukrainian
Abstract: 
The effective and handy form of microbiological inoculant is developed for cultivating safe for health plants on territories contaminated with heavy metals. The microbiological inoculant prevents toxic elements enter into a plant, protects from diseases, stimulates plant growth under nutritives' gap. The inoculant is a consortium of bacteriums with a complex of health-giving features providing its multipurpose use. Preparation was tested in the context of the complex pilot program in model and natural agrocenoses. The basic results reveal that bacteriums of the inoculant hinder from accumulation of heavy metals in over-land part of soy, allowing to grow safe harvests and creating conditions for remediation of soils
Keywords: antropogenical pollution of soil, bioremediation, heavy metals, inoculant
References: 
1. Shil'nikov I. A., Lebedeva L. A. Faktory, vlijajushhie na postuplenie tjazhjolyh metallov v rastenija. Agrohimija. 1994, 10: 91-101 [in Russian].
2. Kramar'ov S. M., Jakovyshyna T. F. Tehnogenne zabrudnennja ruhomymy formamy vazhkyh metaliv g'runtu m. Dnipropetrovs'ka ta jogo prymis'koi' zony. Agrohimija i g'runtoznavstvo. Spec. Vypusk do VI z'i'zdu UTGA 1-5 lypnja 2002, m. Uman'. "G'runtoznavstvo ta agrohimija na shljahu do stalogo rozvytku Ukrai'ny". Knyga 3-ja. 2002: 84-85 [in Ukrainian].
3. G'runtozahysna biologichna systema zemlerobstva v Ukrai'ni: Monografija. Za red. Shikuly M. K. Kyiv: Oranta, 2000 [in Ukrainian].
4. Kramarev S. M., Jakovishina T. F., Shevchenko V. N. Jekologicheskaja ocenka modificirovannogo sul'fatom cinka ammofosa v posevah. Zernovye kul'tury. 2001, 3: 14-15 [in Russian].
5. Kramar'ov S. M., Jakovyshyna T. F. Detoksykacija zabrudnenyh vazhkymy metalamy chornozemiv zvychajnyh Prydniprov'ja. Materialy V Mizhnarodnoi' naukovo-praktychnoi' konferencii': "Problemy ekologii' ta ekologichnoi' osvity", Kryvyj Rig, Vydavnychyj dim, 2006: 8-11 [in Ukrainian].
6. Mahoney P. R., Olson K. D., Porter P. M. et all. Profitability of organic cropping systems in southwestern Minnesota. Renewable Agriculture and Food Systems. 2004, 19(1): 35-46.
https://doi.org/10.1079/RAFS200361
7. Kozyrovs'ka N. O., Negruc'ka V. V. Biopreparat dlja zhyvlennja ta zahystu roslyn Kleps. Patent Ukrai'ny 44189 A, 2001 [in Ukrainian].
8. Kozyrovs'ka N. Vitchyznjanyj biopreparat dlja roslyn chekaje na vyznannja. Visnyk Nacional'noi' Akademii' nauk Ukrai'ny. 2000, 12: 24-28 [in Ukrainian].
9. Zaets I., Voznyuk T., Kovalchuk M. et all. Optimization of plant mineral nutrition under growth-limiting conditions a lunar greenhouse. Kosmichna Nauka i Technologiya. 2006, 12(4): 1-8.
10. Lee S.-W., Glickmann E., Cooksey D. A. Chromosomal locus for cadmium resistance in Pseudomonasputida consisting of a cadmium-transporting ATPase and a MerR family response regulator.
11. Alonso A., Sanchez P., Martinez J.L. Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob. Agents Chemother. 2000, 44: 1778-1782.
https://doi.org/10.1128/AAC.44.7.1778-1782.2000
12. Bamberg K. M., Winter W. T., Nakas J. P. Removal of lead and cadmium by derivatized polysaccharides from Klebsiella oxytoca. Biofilms. 2004, 1: 57-63.
https://doi.org/10.1017/S1479050504001085
13. Yilmaz E., Ensari N. Cadmium biosorption by Bacillus circulans strain EB1. World J. Microbiol. Biotechnol. 2005, 21(5): 777.
https://doi.org/10.1007/s11274-004-7258-y
14. Nies D. H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 1999, 51: 730-750.
https://doi.org/10.1007/s002530051457
15. Burd G. I., Dixon D. G., Glick B. R. Plant growthpromoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 2000, 46(3): 237-245.
https://doi.org/10.1139/w99-143
16. Faisal M., Hasnain S. Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus Annuus L.) growth. Biotechnol. Lett. 2005, 27(13): 943-947.
https://doi.org/10.1007/s10529-005-7188-2
17. Rajkumar M., Nagendran R., Lee K. J., Lee W. H., Kim S. Z. Influence of plant growth promoting bacteria and Cr(6+) on the growth of Indian mustard. Chemosphere. 2006, 62(5): 741-748.
https://doi.org/10.1016/j.chemosphere.2005.04.117
18. Shevchenko O. V., Budzanivs'ka I. G., Patyka V. P. ta in. Vplyv vazhkyh metaliv na perebig virusnyh infekcij roslyn. Kyiv: Fitocentr, 2003 [in Ukrainian].
19. Le Duc D., Terry N. Phytoremediation of toxic trace elements in soil and water. J. Ind. Microbiol. Biotechnol. 2005, 32: 514-520.
https://doi.org/10.1007/s10295-005-0227-0
20. Vlasova S. N., Shabunina E. I., Pereslegina I. A. Aktivnost' glutationzavisimyh fermentov jeritrocitov pri hronicheskih zabolevanijah pecheni u detej. Lab. delo. 1990, 8: 19-21 [in Russian].
21. Semchishin G., Lushhak V., Ogori K. Vozmozhnye prichiny razlichij v chuvstvitel'nosti k kislorodu dvuh shtammov Escherichia coli. Biohimija. 2005, 70(5): 514-522 [in Russian].
22. Sorochyns'kyj B. V., Kozyrovs'ka N. O. Biotehnologichni aspekty problemy fitoremediacii' ob'jektiv navkolyshn'ogo seredovyshha vid radionuklidnyh zabrudnen'. Agrobiotehnologija. 1998, 2: 123-130 [in Ukrainian].
23. Schutzendubel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Godbold D. L., Polle A. Cadmium-induced changes in Cadmiuminduced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol. 2001, 127(3): 887-898.
https://doi.org/10.1104/pp.010318
24. Pereira G. J. G., Molina S. M. G., Lea P. J., Azevedo R. A. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant and Soil. 2004, 239: 1123-1132.
25. Essa A. M., Creamer N. J., Brown N. L., Macaskie L. E. A new approach to the remediation of heavy metal liquid wastes via off-gases produced by Klebsiella pneumoniae M426. Biotechnol. Bioeng. 2006, 95(4): 574-583.
https://doi.org/10.1002/bit.20877
26. Stohs S. J., Bagchi D., Hassoun E., Bagchi M. Oxidative mechanisms in toxicity of metal ions. Free Radic. Biol. Med. 2001, 18: 321-326.
https://doi.org/10.1016/0891-5849(94)00159-H
27. Yang X. D., Dong C. J., Liu J. Y. A plant mitochondrial phospholipid hydroperoxide glutathione peroxidase: its precise localization and higher enzymatic activity. Plant Mol. Biol. 2006, 62(6): 951-962.
https://doi.org/10.1007/s11103-006-9068-0
28. Freeman J. L., Garcia D., Kim D., Hopf A., Salt D. E. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol. 2005, 137: 1082-1091.
https://doi.org/10.1104/pp.104.055293
29. Van Peer R., Niemann G. J., Schippers B. Induced resistance and phytoalexin accumulation in biological control in Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology. 1991, 81: 728-734.
https://doi.org/10.1094/Phyto-81-728
30. Wei G., Klopper J. W., Tuzun S. Induction of systemic resistance of cucumber to Colleotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology. 1991, 81: 1508-1512.
https://doi.org/10.1094/Phyto-81-1508
31. Israr M., Sahi S.V., Jain J. Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. Arch. Environ. Contaminat. Toxicol. 2006, 50: 121-127.
https://doi.org/10.1007/s00244-005-5029-x