Implications of New Standards on Technical Diagnostics and Control Implementation for the Gas Transmission System Efficiency

1Karpash, MO  https://orcid.org/0000-0002-4223-3828
1Oliynyk, AP
1Kogut, GM
2Klyun, AM
1Ivano-Frankivsk National Technical University of Oil and Gas
2Public joint-stock Company UKRTRANSGAZ
Nauka innov. 2019, 15(6):79-88
https://doi.org/10.15407/scin15.06.079
Section: The World of Innovations
Language: English
Abstract: 
Introduction. Ukrainian gas transmision system (GTS) as a part of the whole oil and gas complex takes the important role in energy security of the state. Taking into consideration the aging and physical deterioration procesess, a lot of attentionn today is paid to the question of ensuring GTS relaible operation and maintenance.
Problem Statement. All innovations and technicaogical achievements, implemented into GTS are impossible without a detailed study of productivity of GTS facilities, the costs for implementing the new standards, and the costs for eliminating the emergency situations’ consequences.
Purpose. Assessment and evaluation of data on efficiency of Ukrainian GTS, based on the implementation of new standards on technical diagnostics and control (TDC), influencing significantly on the operation of GTS facilities.
Materials and Methods. For the analysis, we chose the complex mathematical model, allowing to determine the qualitative relationship between the productivity of GTS facilities, the costs of implementing new standards for technical diagnostics and control, and the costs for eliminating the consequences of economic, environmental and other impacts. Besides the expert evaluation method and numerical Runge-Kutt methods were applied for practical use of the proposed model.
Results. The efficiency of GTS operation, according to the proposed model, depends on the costs, spent for the implementation of standards. Among the benefits for increasing of standards expenditures are the growth of emergency response funding, which tends to decreasing in timely manner. Calculation results showed the adequacy of the proposed experts’ assessment model according to the question of objectivity, impartiality and consistency of expert opinions.
Conclusions. The complex of mathematical calculations maintained the qualitative picture of the relationship between selected characteristics. The new approach to analysing data on Ukrainian GTS efficiencywas suggeted, presenting the mechanism for establishing the dependencies between costs of implementing new standards and costs for eliminating emergency situations.
Keywords: efficiency, gas transmission system, mathematical model, standard, technical diagnostics
References: 
1. Bjørnmose, J., Roca, F., Turgot, T., Hansen, D.S. (2009). Directorate General for Internal Policies, Policy Departament A: Economic and Scientific Policies. An Assessment of the Gas and Oil Pipelines in Europe: An Extensive Briefing Note. 
URL: http://www.europarl.europa.eu/document/activities/cont/201106/20110628AT...
[Last accessed: 06.08.2018].
2. DiXi Group. (2016). Ukraine’s Gas Sector Reform: A Future Win-Win for Ukraine and Europe: Policy Brief. 
URL: http://dixigroup.org/storage/files/2016-05-10/polbrief_dixi_gas_market_r...
[Last accessed: 10.07.2018].
3. Sharples, J. (2018). The Oxford Institute for Energy Studies. Ukrainian Gas Transit: Still Vital for Russian Gas Supplies to Europe as Other Routes Reach Full Capacity. 
URL: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2018/05/Ukrainian-...
[Last accessed: 28.08.2018].
4. Pro truboprovidnyi transport: Zakon Ukrainy 1996. No. 2059-VIII. 
URL: http://zakon.rada.gov.ua/laws/show/192/96-вр [Last accessed: 10.07.2018] [in Ukrainian].
5. Kodeks hazotransportnoi systemy: Postanova Natsionalnoi komisii, shcho zdiisniuie derzhavne rehuliuvannia u sferakh enerhetyky ta komunalnykh posluh. 2015. No. 2493. 
URL: http://zakon.rada.gov.ua/laws/show/z1378-15?lang=en
[Last accessed: 11.06.2018] [in Ukrainian].
6. Mazur, I. I., Ivantsov, O. M. (2004). Bezopasnost truboprovodnykh system. Moscow, YTs Elyma [in Russian].
7. Grudz, V. Ya., Grudz, Ya. V., Kostiv, V. V., Mykhalkiv, V. B., Taraevsky, O. S., Tymkiv, D. F. (2012). Tekhnichna diahnostyka truboprovidnykh system: monohrafiia. Ivano-Frankivsk, Lileya [in Ukrainian].
8. Association Agreement between the European Union and its Member States, of the one part, and Ukraine, of the other part of 29 May, 2014. 
URL: https://trade.ec.europa.eu/doclib/docs/2016/november/tradoc_155103.pdf
[Last accessed: 15.05. 2018].
9. Enerhetychna stratehiia Ukrainy na period do 2035 roku: Rozporiadzhennia Kabinetu Ministriv Ukrainy, 2017, No. 605-r. 
URL: http://zakon.rada.gov.ua/laws/show/605-2017-р.
[Last accessed: 10.07.2018] [in Ukrainian].
10. Stratehiia rozvytku systemy tekhnichnoho rehuliuvannia na period do 2020 roku Rozporiadzhennia Kabinetu Ministriv Ukraine 2015, No. 844-r. 
URL: http://zakon.rada.gov.ua/laws/show/844-2015-р [Last accessed: 11.06.2018] [in Ukrainian].
11. Securing Europe’s energy future: Annual Report. (2017). Brussels: ENTSOG. 
URL: https://www.entsog.eu/public/uploads/files/publications/AWP%20&%20Annual...
[Last accessed: 15.08. 2018].
12. Chyong, C. K. (2014). Why Europe Should Support Reform of the Ukrainian Gas Market – Or Risk a Cut-Off: Policy Brief. London: European Council of Foreign Relations. 
URL: https://www.ecfr.eu/page/-/ECFR113_UKRAINE_BRIEF_131014_SinglePages.pdf
[Last accessed: 16.08. 2018].
13. Dymov, Yu. V. (2019). Metrolohyia, standartyzatsyia i sertyfykatsyia. 4 iz. Spb.: Pyter [in Russian].
14. Bekker, M. V., Oryniak, I. V., Rozghoniuk, V. V. (2004). Pro neobkhidnist udoskonalennia normatyvno-tekhnichnoi dokumentatsii v rozrakhunkakh na mitsnist nafto- i hazoprovodiv z defektamy. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 3(12), 116–119 [in Ukrainian].
15. Davis, H. T. (1962). Introduction to Non-Linear Differential Equations. Dover, NY.
16. Fylyppov, A. F. (2007). Vvedenye v teoryiu dyfferentsyalnikh uravnenyi. Yzd. 2-e. Moscow, KomKnyha [in Russian].
17. Khairer, E., Nersett, S., Vanner, H. (1990). Reshenye obyknovennykh dyfferentsyalnykh uravnenyi. Moscow, Myr [in Russian].
18. O’Neil Peter, V. (1991). Advanced Engineering Mathematics. 3rd ed. Belmont, Calif: Wadsworth Pub. Co.
19. Samarskyi, A. A., Mykhailov, A. P. (2005). Matematycheskoe modelyrovanye: Ydey, metody, prymery. 2-e yzd. ispr. Moscow, Fyzmatlyt [in Russian].
20. Seleznev, V. E., Aleshyn, V. V., Klyshyn, H. S. (2002). Metody y tekhnolohyy chyslennoho modelyrovanyia hazoprovodnykh system. Moscow, Edytoryal URSE [in Russian].
21. Matematycheskoe modelyrovanye. (1979). Pod. red. Dzh. Endrius, R. Mak-Louna; per. s anhl. Moscow, Myr [in Russian].
22. Tymashev, S. A., Yablonskykh, Y. Ia. (1998). Ekspertnaia systema otsenky ryska ekspluatatsyy lyneinoi chasty mahystralnyikh truboprovodov. VII Mezhdunarodnaia delovaia vstrecha “Dyahnostyka-98”. Moscow, YRTs Hazprom [in Russian].
23. Samarskyi, A. A., Hulyn, A. V. (1989). Chyslennye metody. Moscow, Nauka [in Russian].
24. Anistratenko, V. O., Frolov, V. H. (1993). Matematychne planuvannia v APK. Kyiv, Vyshcha shkola [in Ukrainian].