Solid Cation Electrolytes and Methanol Energetics

1Prokhorov, IYu., 1Akimov, GYa., 1Radionova, OI
1O.O. Galkin Donetsk Physical-Technical Institute, NAS of Ukraine, Donetsk
Nauka innov. 2011, 7(6):17-32
https://doi.org/10.15407/scin7.06.017
Section: Scientific Basis of Innovation Activity
Language: Russian
Abstract: 
The review of world trends over 2009-2012 years in the field of clear energy is presented. Advantages and disadvantages of the developed and commercial sodium batteries, direct methanol fuel cells and aluminum-air batteries with replaceable electrodes are discussed. We describe the main advantages of methanol energy in comparison with hydrogen. Basic advantages of methanol economics over hydrogen were described. New results of experimental investigations of beta-alumina ceramics with proton conductivity are presented. Two new methods of post processing of sintered membranes providing the value of ionic conductivity at the best world level along with negligible electronic conductivity are proposed. A room direct methanol fuel cell based on the beta-alumina membrane and the planar model of aluminum-air battery with the ceramic separator between anode and cathode sections were assembled and tested.
Keywords: aluminum-air battery, beta alumina, clear energy, DMFC, solid electrolytes
References: 
1. Simmons G. Secretary Chu hosts FY 2012 budget briefing [Online publication] / DOE // DOE Blog. Feb. 14, 2011. Available online: http://blog.energy.gov/blog/2011/02/14/watch-live-130-secretary-chu-host...
2. Prohorov I.Ju. Ot toplivnyh jacheek k vodorodnym jelementam: tverdye jelektrolity i nanojelektrody. I.Ju. Prohorov, G.Ja. Akimov. Energosberezhenie. Energetika. Energoaudit. 2010. No 3. S. 66-75 [in Russian].
3. Smith D.L. Put some sunlight in your tank. California Institute of Technology. Engineering & Science. 2009. Vol. LXXII, no 2. P. 21-26.
4. Burroughs C. Sunshine to petrol. Sandia National Laboratories. Sandia Technology. 2008. 9(4): 2-3.
5. Jiao F. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. F. Jiao, H. Frei. Lawrence Berkeley National Laboratory. Angewandte Chemie. 2009. 48(11): 1841-1844.
https://doi.org/10.1002/anie.200805534
6. U.S. Patent 3,996,064, Int. Cl. H 01 M 10/44, 10/00. Electrically rechargeable redox flow cell. L.H. Thaller (Ohio, U.S.A.). Appl. 606,891; filed Aug. 22, 1975; publ. Dec. 7, 1976. 6 p.
7. Turner J. Battery technology stores clean energy [Online publication] NASA. NASA Spinoff. 2008. Available online: http://www.sti.nasa.gov/ tto/Spinoff2008/er_2.html
8. Whitaker D. The New Electricity Age. D. Whitaker. Siemens AG. Living Energy. 2010. Issue 3. P. 1-15.
9. Prohorov I.Ju. Fotojenergetika i vodorodnaja jenergetika: vozmozhnosti i dostizhenija. I.Ju. Prohorov, G.Ja. Akimov. Nauka іnnov. 2009. 5(6):11-24 [in Russian].
https://doi.org/10.15407/scin5.06.011
10. Montgomery M. United States renewable energy investment potential Part I [Online publication] Dig Media Inc. Rare Earth Investing News. Feb. 14, 2011. Available online: http://rareearthinvesting-news.com/2760/united-states-renewable-energy-i...
11. Advanced materials and devices for stationary electrical energy storage applications: The workshop report. Nexight Group. U.S. Department of Energy, Office of Elec tricity Delivery and Energy Reliability, December 2010. 47 p.
12. Portable reformed methanol fuel cells. Pathways to commercial success: Technologies and products supported by the fuel cell technologies program. U.S. Pacific Northwest National Laboratory. U.S. Department of Energy, EERE Information Center, August 2010. P. D-30.
13. Direct methanol fuel cell for handheld electronics applications. Pathways to commercial success: Technologies and products supported by the fuel cell technologies program. U.S. Pacific Northwest National Laboratory. U.S. Department of Energy, EERE Information Center, August 2010. P. E-6.
14. Olah G.A. The methanol economy. G.A. Olah. Chemical Engineering News. 2003. 81(38): 5.
https://doi.org/10.1021/cen-v081n038.p005
15. Olah G.A. Beyond oil and gas: The methanol economy. G.A. Olah, A. Goeppert, G.K. Surya Prakash, 1st Edition. Berlin: Wiley-VCH, 2006. 304 p.
16. Yuah K. The current status and prospect of hydrogen economy in China. K. Yuah. Int. Seminar on the Hydrogen Economy for Sustainable Development, Reykjavik, Iceland, 28-29 september 2006.
17. Amigun B. Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance. B. Amigun, J. Gorgens, H. Knoetze. Energy Policy. 2010. 38(1): 312-322.
https://doi.org/10.1016/j.enpol.2009.09.020
18. Lemus R.G. Updated hydrogen production costs and parities for conventional and renewable technologies. R.G. Le mus, J. M. Martínez Duart. Int. J. Hydrogen Energy. 2010. 35(9): 3929-3936.
https://doi.org/10.1016/j.ijhydene.2010.02.034
19. Gogel' V. Problemy razvitija metanol'nyh toplivnyh jelementov. V. Gogel', T. Frej, E. Kerres, L. Erissen, Ju. Garhe. Elektrohimicheskaja energetika. 2002. 2(21): 18-26 [in Russian].
20. Xie C. Development of a 2W direct methanol fuel cell power source. C. Xie, J. Bostaph, J. Pavio. J. Power Sources. 2004. 136(1): 55-65.
https://doi.org/10.1016/j.jpowsour.2004.05.025
21. Dillon R. International activities in DMFC R&D: status of technologies and potential applications. R. Dillon, S. Srinivasan, A.S. Aricò, V. Antonucci. J. Power Sources. 2004. 127(1-2): 112-126.
https://doi.org/10.1016/j.jpowsour.2003.09.032
22. Peighambardoust S.J. Review of the proton exchange membranes for fuel cell applications. S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi. Int. J. Hydrogen Energy. 2010. 35(17): 9349-9384.
https://doi.org/10.1016/j.ijhydene.2010.05.017
23. Leading Fuel Cell Technologies. Applications, costs, economic competitiveness and future prospects: Industry report [Online publication] Business Insight U.S.A. May 2009. Available online: http://www.reportlinker.com/p0131821/Leading-Fuel-Cell-TechnologiesAppli...
24. Cha H.-C. Performance test and degradation analysis of direct methanol fuel cell membrane electrode assembly during freeze/thaw cycles. H.-C. Cha, C.-Y. Chen, R.-X. Wang, C.-L. Chang. J. Power Sources. 2011.
25. Ferloni P. New materials for solid state electrochemistry. P. Ferloni, A. Magistris. J. Phys. 1994. 4(1): 3-15.
26. Kim S.-J. X+-β”-aluminas.Nafion (X = H3 O, NH4 ) hybrid membranes for high-temperature PEMFCs. S.-J. Kim, H.-M. Kim, Y.-T. Yoo, J.-R. Haw, S.-G. Kim, M.-H. Jang, S.-K. Lim. J. Ceram. Proc. Res. 2009. 10(2): 176-182.
27. Avila-Paredes H.J. Room-temperature protonic conduction in nanocrystalline films of yttria-stabilized zirconia. H.J. Avila-Paredes, E. Barrera-Calva, H.U. Anderson, R.A. De Souza, M. Martin, Z.A. Munir, S. Kim. J. Mater. Chem. 2010. 20(30): 6235-6238.
https://doi.org/10.1039/c0jm00051e
28. Vaivars G. Zirconium phosphate based inorganic direct methanol fuel cell. G. Vaivars, N.W. Maxakato, T. Mokrani, L. Petrik, J. Klavins, G. Gericke, V. Linkov. Mater. Sci. (Medžiagotyra). 2004. 10(2): 162-165.
29. Lu X. Sodium-beta alumina batteries: Status and challenges. X. Lu, J.P. Lemmon, V. Sprenkle, Z. Yang. JOM. 2010. 62(9): 31-36.
https://doi.org/10.1007/s11837-010-0132-5
30. Park C.-W. Room-temperature solid-state sodium/sulfur battery. C.-W. Park, J.-H. Ahn, H.-S. Ryu, K.-W. Kim, H.-J. Ahn. Electrochem. Solid-State Lett. 2006. 9(3): A123-A125.
https://doi.org/10.1149/1.2164607
31. Kim T.B. Electrochemical properties of sodium/pyrite battery at room temperature. T.B. Kim, J.W. Choi, H.S. Ryu, G.B. Cho, K.W. Kim, J.H. Ahn, K.K. Cho, H.J. Ahn. J. Power Sources. 2007. 174(4): 1275-1278.
https://doi.org/10.1016/j.jpowsour.2007.06.093
32. Lu X. High power planar sodium-nickel chloride battery. X. Lu, G. Coffey, K. Meinhardt, V. Sprenkle, Z. Yang, J.P. Lemmon. ECS Trans. 2010. 28(22): 7-13.
https://doi.org/10.1149/1.3492326
33. Lu X. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. X. Lu, G. Xia, J.P. Lemmon, Z. Yang. J. Power Sources. 2010. 195(9): 2431-2442.
https://doi.org/10.1016/j.jpowsour.2009.11.120
34. Angell A. Solid ionic conductors: Ceramics, glasses, polymers, and gels and their composites. A. Angell. Materials for large-scale energy storage: New Industrial Che mistry and Engineering Workshop Abstracts, Gaither sburg, MD, Sept. 16-17, 2010. Washington, DC: Council for Chem. Res., 2010. P. 6.
35. Dunn B. Effect of air exposure on the resistivity of sodium beta and beta aluminas. B. Dunn. J. Amer. Ceram. Soc. 1981. 64(3): 125-128.
https://doi.org/10.1111/j.1151-2916.1981.tb10241.x
36. Powers R.W. The separability of inter- and intragranular resistivities in sodium beta-alumina type ceramics. R.W. Powers. J. Mater. Sci. 1984. 19(3): 753-760.
https://doi.org/10.1007/BF00540445
37. Stevens R. Structure, properties and production of β-alumina. R. Stevens, J.G.P. Binner. J. Mater. Sci. 1984. 19(3): 695-715.
https://doi.org/10.1007/BF00540440
38. DeNuzzio J.D. Protonic solid electrolytes: Stability and conductivity of ammonium. hydronium beta” alumina: Ph.D. dissertation in mater. sci. eng. J.D. DeNuzzio. Pennsylvania, 1986. 179 p.
39. Nicholson P.S. Microstructural design and conductivity and ultrasonic activation in the ion exchange of H3 O+ and NH4 + β"-aluminas. P.S. Nicholson. Mat. Res. Soc. Symp. Proc. 1991. Vol. 210. P. 541-551.
40. Troshen'kin V.B. Sostojanie razrabotok po issledovaniju processa i konstruirovanija oborudovanija poluchenija vodoroda iz vody s ispol'zovaniem splavov. V.B. Troshen'kin, N.N. Zipunnikov. Vіsnik Nac. teh. unіv. «HPІ». Tematichnij vipusk: Novі rіshennja v suchasnih tehnologіjah. Harkіv: NTU «HPІ», 2008. No 12. S. 51-55 [in Russian].
41. Combat Hybrid Power System Component Technologies: Technical Challenges and Research Priorities. Committee on Assessment of Combat Hybrid Power Systems, U.S. National Research Council. Washington, D.C.: The National Academies Press, 2003. 88 p.
42. Lloyd A. Maxell introduces fuel cell using water and aluminum [Online publication] Hitachi Maxell Ltd. Treebugger. Science and Technology. April 24, 2006. Available online: http://www.treehugger. com/files/2006/04/maxell_introduc.php
43. Yang S. Design and analysis of aluminum/air battery system for electric vehicles. S. Yang, H. Knickle. J. Power Sources. 2002. 112(1): 162-173.
https://doi.org/10.1016/S0378-7753(02)00370-1
44. Van Pelt P. Giant Aluminum Batteries to transport elect ricity [Online publication] P. Van Pelt. ZPEnergy. 24.04.2004. Available online: http:// www.zpenergy.com/modules.php?name=News&file=article&sid=717
45. Patent WO 01/33658 A2, Int. Cl. H 01 M 12/02, 12/06. Metal-air battery. A.M. Iarochenko, E.B. Kulakov, O.I. Krakhin, S.D. Seruk (Canada, Russia); applicant Eontech Group Inc. (Canada). Appl. No. PCT/CA00/01261; filed Oct. 26, 2000; publ. May 10, 2001. 53 p.
47. Prohorov I.Ju. Formirovanie jelektricheskih svojstv keramicheskih beta-glinozemov. I.Ju. Prohorov, O.I. Prohorova, G.Ja. Akimov. Ogneupory i teh. keramika. 2010. No 10. S. 11-15 [in Russian].
48. Prohorov I.Ju. Tehnologija i perspektivy kationnyh jelektrolitov na osnove β-glinozemov. I.Ju. Prohorov, G.Ja. Akimov. Ogneupory i teh. keramika. 2008. No 1. S. 18-28 [in Russian].
49. Shqau K. Characterization of the electronic conduction parameter of cation conducting solid electrolytes: Ph.D. dissertation in mater. sci. eng. K. Shqau. Stuttgart, Germany, 2003. 101 p.