Field Type Ion Injector
Title | Field Type Ion Injector |
Publication Type | Journal Article |
Year of Publication | 2010 |
Authors | Vozny, VI, Storizhko, VYu., Miroshnichenko, VI, Tokman, VV, Mironets, Ye.A, Batura, Ye.O |
Short Title | Nauka innov. |
DOI | 10.15407/scin6.05.072 |
Volume | 6 |
Issue | 5 |
Section | Scientific Basis of Innovation Activity |
Pagination | 72-76 |
Language | Russian |
Abstract | To improve the spatial resolution of FIB systems, field type ion injector has been developed. Measurements of the injector parameters are performed on the high-vacuum stand with a residual pressure about 5 ⋅ 10-7 Pa. Ion injector consists of a needle-in-capillary type gas field ion source, focusing einzel lens and compact Wien filter with permanent magnets. The field ion source design provides the possibility of cooling the tungsten needle to a liquid nitrogen temperature. Currentvoltage characteristics of the ion source operating at room temperature have been measured. Ion field emission current up to (1-5)•10-12 A at 2-5 kV emission voltage is obtained.
|
Keywords | brightness, emission, focused ion beam, gas field ion source |
References | 1. Szymanski R., Jamieson D.N. Ion source brightness and nuclear microprobe applications. Nucl. Instrum. Meth. B. 1997. V. 130. P. 80-85.
https://doi.org/10.1016/S0168-583X(97)00268-1 2. Jamieson D.N. New generation nuclear microprobe systems. 7 Intern. Conference on Nuclear Microprobe Technology and Applications. France. 10 September. 2000. MF-01. P. 1-16. 3. Lejeune C. and Aubert J. Emittance and brightness: definitions and measurements. Advances in Electronics and Electron Physics. part 13A. Septier: New York, 1980. P. 159-259. 4. Storizhko V.E., Ponomarev A.G. et al. The Sumy scanning nuclear microprobe: Design features and first tests. Nucl. Instrum. Meth. B. 2007. V. 260. P. 49-54. https://doi.org/10.1016/j.nimb.2007.01.250 5. Legge G.J.F., Moloney G.R., Colman R.A. and Allan G.L. High velocity ion microprobes and their source requirements. Rev. Sci. Instrum. 1996. V. 67. No. 3. P. 909-914. https://doi.org/10.1063/1.1147231 6. Bell A.E., Jousten K. and Swanson L.W. High-field ion sources. Rev. Sci. Instrum. 1990. V. 61. No. 1. P. 363-365. https://doi.org/10.1063/1.1141294 7. Orloff J.H. and Swanson L.W. Study of a field-ionization source for microprobe applications. J. Vac. Sci. Technol. 1975. V. 12. P. 1209-1213. https://doi.org/10.1116/1.568497 8. Tondare V.N. Quest for high brightness, monochromatic noble gas ion sources. J. Vac. Sci. Technol. A. 2005. V. 23. No. 6. P. 1498-1508. https://doi.org/10.1116/1.2101792 9. Edinger K., Yun V., Melngailis J., Orloff J., Magera G. Development of a high brightness gas field ion source. J. Vac. Sci. Technol. B. 1997. V. 15. No. 6. P. 2365-2368. https://doi.org/10.1116/1.589648 10. Konishi M., Takizawa M. and Tsumori T. Characteristics of a helium field ion gun. J. Vac. Sci. Technol. B. 1988. V. 6. P. 498-501. https://doi.org/10.1116/1.584051 11. Salancon E., Hammadi Z., Morin R. A new approach to gas field ion sources. Ultramicroscopy. 2003. V. 95. P. 183-188. https://doi.org/10.1016/S0304-3991(02)00315-7 12. Mikhailovskij I.M., Wanderka N., Storizhko V. et all. A new approach for explanation of specimen rupture under high electric field. Ultramicroscopy. 2009. V. 109. P. 480-485. https://doi.org/10.1016/j.ultramic.2008.12.003 13. Muller E.W., Tsong T.T. Field Ion Microscopy, Principles and Applications. Elsevier: New York, 1969. P. 314. 14. Korol' Je.N., Lobanov V.V, Nazarenko V.A., Pokrovskij V.A. Fizicheskie osnovy polevoj mass-spektrometrii. Kyiv: Nauk. dumka, 1978 [in Russian]. |