Quantum Pharmacology: New Direction in Materia Medica

TitleQuantum Pharmacology: New Direction in Materia Medica
Publication TypeJournal Article
Year of Publication2010
AuthorsChekman, IS
Short TitleNauka innov.
DOI10.15407/scin6.02.029
Volume6
Issue2
SectionScientific Basis of Innovation Activity
Pagination29-35
LanguageUkrainian
Abstract
On the basis of literature data analysis and own research new directions in quantum pharmacology development are allocated. They are: 1) research of spatial and electronic structure of materia medica molecules; 2) establishment of dependence between chemical structure and pharmacological activity of medicines (QSAR); 3) role of solvent in preparation effect mechanism; 4) definition of pharmacophores of medical products; 5) design of preparations for various diseases treatment de novo development; 6) forecasting of medicine pharmacological activity; 7) protein-ligand interactions between physiologically active substances of preparations and biomolecules. The further development of a new direction in Materia Medica – quantum pharmacology – is to promote more accelerated synthesis of new medical products for treatment of various diseases.
Keywordsforecast of activity of chemical compounds, medical products, pharmacophores, QSAR, quantum pharmacology
References
1. D'juar M. Teorija molekuljarnyh orbitalej v organicheskoj himii. Moskva: Mir, 1972 [in Russian].
2. Lobaniv V.V., Stryzhak G.Je. Kurs lekcij z teorii' himichnogo zv'jazku ta osnov hemosorbcii'. Kyiv: Nauk. dumka, 2008 [in Ukrainian].
3. Solov'ev M.E., Solov'ev M.M. Komp'juternaja himija. Moskva: Solon-press, 2005 [in Russian].
4. Stepanov N.F. Kvantovaja mehanika i kvantovaja himija. Moskva: Mir, 2001 [in Russian].
5. Chekman I.S. Kvantova farmakologija: stan naukovyh doslidzhen'. Likars'ka sprava. Vrachebnoe delo. 2007. No 8: 3-11 [in Ukrainian].
6. Clary D.C. Quantum chemistry of complex system. Science. 2006. Vol. 314. P. 265-266.
https://doi.org/10.1126/science.1133434
7. Zagorodnyj M.I., Pashkovs'kyj O.A, Puzyrenko A.M. ta in. Kvantovo-himichni aspekty vzajemodii' pentoksyfilinu z aminokyslotamy. Naukovyj visnyk NMU im. O.O. Bogomol'cja. 2006. No 4: 48-53 [in Ukrainian].
8. Nebesna T.Ju., Chekman I.S. Doslidzhennja kvantovohimichnyh vlastyvostej beta-adrenoblokatoriv — atenololu, metoprololu, propranololu. Naukovyj visnyk NMU im. O.O. Bogomol'cja. 2006. No 4: 79-86 [in Ukrainian].
9. Nebesna T.Ju., Zagorodnyj M.I., Jagupova A.S. ta in. Vyv chennja molekuljarnoi' struktury ta kvantovo-himichnyh vlastyvostej acetylcystei'nu. Ukrai'ns'kyj naukovo-medychnyj molodizhnyj zhurnal. 2007. No 1-2: 19-23 [in Ukrainian].
10. Chekman I.S., Kazakova O.O., Nebesna T.Ju. Kvantovo-himichni ta topologichni deskryptory v doslidzhennjah zalezhnosti «struktura-aktyvnist'» (ogljad literatury ta vlasnyh doslidzhen'). Zhurnal Akademii' medychnyh nauk Ukrai'ny. 2008. 14(4): 636-649 [in Ukrainian].
11. HyperChem™, Release 5.1 Pro for Windows, Copyright ©1998 Hypercube, Inc. Internet Download.
12. Stewart J.J.P. MOPAC: A semiempirical molecular orbital program. J. Computer-Aided Molecular Design. 1990. 4(1): 1-105.
https://doi.org/10.1007/BF00128336
13. Stewart J.J.P. Aplicatoin of the PM6 method to modeling proteins. J. Mol. Model. 2009. 15(7): 767–805.
https://doi.org/10.1007/s00894-008-0420-y
14. Ugliengo P., Viterbo D., Chian G. MOLDRAW: A program for Representing Molecules and Crystal on Personal Computers. Torino University, Release 1.0, Version A.
15. Xidos J. D., Li J., Zhu T. et al. GAMESOL-version 3.1, University of Minnesota, Minneapolis, 2002, based on the General Atomic and Molecular Electronic Structure System (GAMESS).
16. Basak S.C., Mills D., Mumtaz M.M. A quantitative structure-activity relationship (QSAR) study of dermal ab sor ption using theoretical molecular descriptors. SAR and QSAR in Environmental Research. 2007. 18(1-2): 45-55.
https://doi.org/10.1080/10629360601033671
17. Basulev B.F., Saidkhodzhaev A.I., Narzullaev S.S. et al. Molecular modeling and QSAR analysis of the esterogenic and terpenoids isolated from Fedula plants. SAR QSAR Environ Res. 2007. 18(7-8): 663–673.
https://doi.org/10.1080/10629360701428631
18. Clare B.W., Supuran C.T. A physically interpretable quantum-theoretic QSAR for some carbonic anhydrase inhibitors with diverse aromatic rings, obtained by a new QSAR procedure. Bioorg. Med. Chem. 2005. 13(6): 2197-2211.
https://doi.org/10.1016/j.bmc.2004.12.055
19. Popelier P.L., Smith P.J. QSAR models based on quantum topological molecular similarity. Eur. J. Med. Chem. 2006. 41(5): 862-873.
https://doi.org/10.1016/j.ejmech.2006.03.004
20. Sutherland J.J., O'Brien L.A., Weaver D.F. A comparison of methods modeling quantitative structure – Activity Relationships. J. Med. Chem. 2004. Vol. 47. P. 5541-5554.
https://doi.org/10.1021/jm0497141
21. Tropsha A. Variable selection QSAR modeling, model validation, and virtual screening. An. Rep. Comp. Chem. 2007. Vol. 2. P. 113-168.
https://doi.org/10.1016/S1574-1400(06)02007-X
22. Zhang L., Zhou P., Yang F. et al. Computer-based QSARs for predicting mixture toxicity of benzene and its derivatives. Chemosphere. 2007. 67(2): 396-401.
https://doi.org/10.1016/j.chemosphere.2006.09.018
23. Miani A., Raugei S., Carloni P. et al. Structure and Raman spectrum of clavulanic acid in aqueous solution. J. Phys. Chem. 2007. Vol. 111. P. 2621-2630.
https://doi.org/10.1021/jp066135u
24. Chekman Y.S., Kazakova O.A., Nebesnaja T.Ju. i dr. Izuchenye kvantovo-farmakologycheskyh svojstv dygoksyna. Dopovidi Nacional'noi' akademii' nauk Ukrai'ny. 2008. No 4: 182-187 [in Russian].
25. Battacharjee A.K., Skanchy D.J., Jenning B. Analysis of stereoelectronic properties, mechanism of action and pharmacophore of synthetic indolo[2,1-b]quinazoline-6,12-dione derivatives in relation to antileishmanial activity using quantum chemical, cyclic voltammetry and 3-DQSAR CATALYST procedures. Bioorg. Med. Chem. 2002. Vol. 10. P. 1979-1989.
https://doi.org/10.1016/S0968-0896(02)00013-5
26. Alagona G., Ghio C., Monti S. Ab initio modeling of com petitive drug-drug interactions: 5-fluorouracil dimers in the gas phase and in solution. Intern. J. Quant. Chem. 2001. 83(3-4): 128-142.
https://doi.org/10.1002/qua.1205
27. Baker M.L., Jiang W., Wedemeyer W.J. Ab initio modeling of the herpesvirus VP26 core. Comput. Biol. 2006. 2(10): 1632-1636.
28. Sadym A.V., Lagunin A.A., Filimonov D.A., Poroikov V.V. Internet-system for prediction of biological activity spectra of chemical substances. Chim. Pharm. J. 2002. 36(10): 21-26.
29. Bertini I., Fragai M., Giachetti A. Combining in ilico tools and NMR data to validate portein-ligand structural models. Application to matrix metalloproteinases. J. Med. Chem. 2005. Vol. 48. P. 7544-7559.
https://doi.org/10.1021/jm050574k
30. Cornell W.D. Recent evaluations of high throughput docking methods for pharmaceutical leads finding — consensus and caveats. An. Rep. Comp. Chem. 2007. Vol. 2. P. 299-323.
31. Rinaldo D., Philipp D.M., Lippard S.J. et al. Intermediates in dioxygen activation by methane monooxygenase: a QM/MM study. J. Amer. Chem. Soc. 2007. Vol. 129. P. 3135-3147.
https://doi.org/10.1021/ja0654074
32. Wang Y., Cheng J., Qian X. Actions between neonicotinoids and key residues of insect nAChR based on an abquantum chemistry study: Hydrogen bonding and coo pe rative π−π interaction. Bioorg. Med. Chem. 2007. Vol. 15. P. 2624-2630.
https://doi.org/10.1016/j.bmc.2007.01.047
33. Saan H.M., Thiel W. QM/MM methods for biomolecular system. Andrew Chem. INT. Ed. Engl. 2009. 48(7):1198-1229.