Development of Technology for Sensor Chip Production with Increased Sensitivity and Improved Physical and Mechanical Characteristics for Optical Sensors Based on Surface Plasmon Resonance

TitleDevelopment of Technology for Sensor Chip Production with Increased Sensitivity and Improved Physical and Mechanical Characteristics for Optical Sensors Based on Surface Plasmon Resonance
Publication TypeJournal Article
Year of Publication2017
AuthorsDanko, VA, Indutnyi, IZ, Ushenin, Yu.V, Lytvyn, PM, Mynko, VI, Shepeliavyi, PYe., Lykanyuk, MV, Korchovyi, AA, Khristosenko, RV
Short TitleNauka innov.
SectionResearch and Engineering Innovative Projects of the National Academy of Sciences of Ukraine
An innovative project on the development of a method for manufacturing sensor chips with increased sensitivity for biosensors based on surface plasmon resonance (SPR) operating in the Kretschmann scheme has been completed. An increase in sensitivity of such sensor has been achieved by high-frequency periodic grate on the sensor chip surface formed by interference photolithography. All technology processes have been optimized. A pilot sample of modernized SPR refractometer as well as a pilot batch of nanostructured sensor chips with spatial frequencies up to 3400 mm-1 have been manufactured and tested. The use of nanostructured chips resulted in a 4.7-time increase in the SPR refractometer sensitivity.
Keywordsbiosensors, interference lithography, surface plasmon resonance, vacuum chalcogenide photoresists
1. Nylander C., Liedberg B., Lind T. Gas detection by means of surface plasmon resonance. Sens. Actuators. 1982. V. 3. P. 79-88.
2. Schmitt H.-M., Brecht A., Piehler J., G Gauglitz. An integrated system for optical biomolecular interaction analysis. Biosensors and Bioelectronics. 1997. 12(8): 809-816.
3. Huang L., Reekmans G., Saerens D., Friedt J.-M., Frederix F., Francis L., Muyldermans S., Campitelli A., Van Hoof C. Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosensors & Bioelectronics. 2005. 21(3): 483-490.
4. Mauriz E., Calle A., Manclús J.J., Montoya A., Lechuga L.M. Multi-analyte SPR immunoassays for environmental biosensing of pesticides. Analytical and Bioanalytical Chemistry. 2007. 387(4): 1449-1458.
5. Patel P.D. Overview of affinity biosensors in food analysis. Journal of AOAC International. 2006. 89(3): 805-818.
6. Patrick Englebienne, Anne Van Hoonacker, Michel Verhas. Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy. 2003. 17(2, 3): 255-273.
7. Alleyne C.J., Kirk A.G., McPhedran R.C., Nicorovici N-A.P. and Maystre D. Enhanced SPR sensitivity using periodic metallic structures. Opt. Express. 2007. V. 15. P. 8163-8169.
8. Dan'ko V.A., Dorozinsky G.V., Indutnyi I.Z., Myn'ko V.I., Ushenin Yu.V., Shepeliavyi P.E., Lukaniuk M.V., Korchovyi A.A., Khrystosenko R.V. Nanopatterning Au chips for SPR refractometer by using interference lithography and chalcogenide photoresist. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. 18(4): 438.
9. Cattoni A., Cambril E., Decanini D., Faini G., Haghiri-Gosnet A.M. Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold. Microelectronic Engineering. 2010. V. 87. P. 1015-1018.
10. Fu Y., Kok N., Bryan A., Zhou W. Quasi-direct writing of diffractive structures with a focused ion beam. Optics Express. 2004. 12(9): 1803.
11. Zhang X.Y., Whitney A.V., Zhao J., Hicks E.M., and Van Duyne R.P. Advances in contemporary nanosphere lithographic techniques. J. Nanosci. Nanotechnol. 2006. 6(7): 1920-1934.
12. Chuang S.Y., Chen H.L., Kuo S.S., Lai Y.H., Lee C.C. Using direct nanoimprinting to study extraordinary transmission in textured metal films. Optics Express. 2008. 16(4): 2415.
13. Brizuela F., Wang Y., Brewer C.A., Pedaci F., Chao W., Anderson E.H., Liu Y., Goldberg K.A., Naulleau P., Wachulak P., Marconi M.C., Attwood D.T., Rocca J.J., Menoni C.S. Microscopy of extreme ultraviolet lithography masks with 13.2 nm tabletop laser illumination. Optics Letters. 2009. 34(3): 271-273.
14. Alexander Arriola, Ainara Rodriguez, Noemi Perez, Txaber Tavera, Michael J. Withford, Alexander Fuerbach, and Santiago M. Olaizola. Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors. Opt. Mater. Express. 2012. 2(11): 1571-1579.
15. Vala M. and Homola J. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays. Optics Express. 2014. 22(15): 18778.
16. Indutnyi I., Min'ko V., Shepelyavyi P., Sopinskyy M., Tkach V., Dan'ko V. Growth of the photonic nanostructures using interference lithography and oblique deposition in vacuum. Optoelectronika I Poluprovodnikova Tehnika (Ukraine). 2011. 46: 47-54.
17. Dan'ko V., Indutnyi I., Min'ko M., Shepelyavyi P. Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors. Optoelectronics, Instrumentation and Data Processing. 2010. 46(5): 483-490.
18. Gazzola E., Brigo L., Zacco G., Zilio, P.; Ruffato, G.; Brusatin, G., Romanato F. Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting. Plasmonics, Springer Science+Business Media, New York. 2013. 9(4): 867-876.
19. Johnson P. B. and Christy R. W. Optical Constants of the Noble Metals. Phys. Rev. 1972. B 6: 4370-4379.