References | 1. World Health Organization. Global tuberculosis report. Kyiv, 2012. http://apps.who.int/iris/bitstream/10665/ 75938/1/9789241564502_eng.pdf.
2. Kumar K., Awasthi D., Berger W.T., Tonge P.J., Slayden R.A., Ojima I. Discovery of anti-TB agents that target the cell-division protein FtsZ. Future Med Chem. 2010, 2(8): 1305-1323. https://doi.org/10.4155/fmc.10.220
3. Osnovni zasady organizacii' medychnoi' dopomogy hvorym na tuberkul'oz (posibnyk z organizacijno-meto dych noi' roboty). Ju. I. Feshhenko, V. M. Mel'nyk, V. G. Ma tu sevych, I.O. Novozhylova, V.O. Juhymec', M.I. Lyn nyk. Za red. Ju. I. Feshhenka, V. M. Mel'nyka. Elektron. dani. Kyiv, 2012. http://www.ifp.kiev.ua/ftp1/original/2012/ feschenko2012-1.pdf [in Ukrainian].
4. Levyc'ka N.A., Bazhora Ju.I., Nikolajevs'kyj V.V., Asmolov O.K. Medykamentozna rezystentnist' miko bakterij tuberkul'ozu, shho buly vydileni vid hvoryh v mykolai'vs'kij oblasti Ukrai'ny protjagom 2000-2002. Ukrai'ns'kyj pul'monologichnyj zhurnal. 2003, 4: 17-20 [in Ukrainian].
5. Cheren'ko C. Tuberkul'oz - hvoroba social'na. UNIAN. Zdorov'ja. 2008, 77: 9-18 [in Ukrainian].
6. de Colombani P., Veen J. (Ed.) Review of the National Tuberculosis Programme in Ukraine. 10-22 October 2010, WHO Regional Office for Europe. World Health Organization: 2011.
7. Musser J.M., Amin A., Ramaswamy S. Negligible genetic diversity of mycobacterium tuberculosis host immune system protein targets: evidence of limited selective pressure. Genetics. 2000, 155(1): 7-16. https://doi.org/10.1093/genetics/155.1.7
8. Hudson A., Imamura T., Gutteridge W., Kanyok T., Nunn P. The current anti-TB drugre search and development pipeline. TDR/PRD/TB/03.1W. 2003: http:// www.who.int/tdr/publications/documents/anti-tbdrug.pdf.
9. Tripathi R.P., Tewari N., Dwivedi N., Tiwari V.K. Fighting tuberculosis: an old disease with new challenges. Med Res Rev. 2005, 25(1): 93-131. https://doi.org/10.1002/med.20017
10. Pavan F.R., Sato D.N., Higuchi C.T., Santos A.C.B., Vilegas W., Leite, C.Q.F. In vitro anti-Mycobacterium tu berculosis activity of some Brazilian "Cerrado" plants. Revista Brasileira de Farmacognosia. 2009, 19: 204-206. https://doi.org/10.1590/S0102-695X2009000200004
11. Mani N., Gross C.H., Parsons J.D., Hanzelka B., Müh U., Mullin S., Liao Y., Grillot A.L., Stamos D., Charifson P.S., Grossman T.H. In vitro characterization of the anti bacterial spectrum of novel bacterial type II topoisomerase inhibitors of the aminobenzimidazole class. Antimicrob Agents Chemother. 2006, 50(4): 1228-1237. https://doi.org/10.1128/AAC.50.4.1228-1237.2006
12. Grossman T.H., Bartels D.J., Mullin S., Gross C.H., Parsons J.D., Liao Y., Grillot A.L., Stamos D., Olson E.R., Charifson P.S., Mani N. Dual targeting of GyrB and ParE by a novel aminobenzimidazole class of antibacterial compounds. Antimicrob Agents Chemother. 2007, 51(2): 657-666. https://doi.org/10.1128/AAC.00596-06
13. Brycun V.N., Karpov P.A., Emec A.I., Lozinskij M.O., Bljum Ja.B. Protivotuberkuleznye svojstva proizvod nyh imidazola i benzimidazola. Zhurnal org. ta farm. himii. 2011, 9(3, 35): 3-14 [in Russian].
14. Koch A., Mizrahi V., Warner D.F. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerging Microbes & Infections. 2014, 3(e17): doi:10.1038/emi.2014.17. https://doi.org/10.1038/emi.2014.17
15. Loose M., Mitchison T.J. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cy toskeletal patterns. Nature Cell Biology. 2014, 16: 38-46. https://doi.org/10.1038/ncb2885
16. Chen Y., Anderson D.E., Rajagopalan M., Erickson H.P. Assembly dynamics of Mycobacterium tuberculosis FtsZ. J Biol Chem. 2007, 282(38): 27736-27743. https://doi.org/10.1074/jbc.M703788200
17. White E.L., Ross L.J., Reynolds R.C., Seitz L.E., Moore G.D., Borhani D.W. Slow polymerization of Mycobacterium tuberculosis FtsZ. J Bac te riol. 2000, 182(14): 4028-4034. https://doi.org/10.1128/JB.182.14.4028-4034.2000
18. Kapoor S., Panda D. Targeting FtsZ for antibacterial therapy: a promising avenue. Expert Opin Ther Targets. 2009, 13(9): 1037-1051. https://doi.org/10.1517/14728220903173257
19. MacDonald L.M., Armson A., Thompson A.R., Rey noldson J.A. Characterisation of benzimidazole binding with recombinant tubulin from Giardia duodenalis, Ence phalitozoon intestinalis, and Cryptosporidium parvum. Mol Biochem Parasitol. 2004, 138(1): 89-96. https://doi.org/10.1016/j.molbiopara.2004.08.001
20. Robinson M.W., McFerran N., Trudgett A., Hoey L., Fairweather I. A possible model of benzimidazole binding to beta-tubulin disclosed by invoking an inter-domain movement. J. Mol. Graph. Model. 2004, 23(3): 275-284. https://doi.org/10.1016/j.jmgm.2004.08.001
21. Sambanthamoorthy K., Gokhale A.A., Lao W., Pa rashar V., Neiditch M.B., Semmelhack M.F., Lee I., Waters C.M. Identification of a novel benzimidazole that in hibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob Agents Chemother. 2011, 55(9): 4369-4378. https://doi.org/10.1128/AAC.00583-11
22. Küçükbay H., Durmaz R., Okuyucu N., Günal S., Kazaz C. Synthesis and antibacterial activities of new bis-ben zimidazoles. Arzneimittelforschung. 2004, 54(1): 64-68. https://doi.org/10.1055/s-0031-1296938
23. Karpov P.A., Demchuyk O.M., Blume Ya.B., Britsun V.M., Volochnyk D.M. Discovery of new anti-TB compounds that target Mycobacterial FtsZ: highthroughput screening and molecular docking. Moscow Conference on Computational Molecular Biology (MCCMB'13). Moscow, Russia July 25-28. 2013: 223-224.
24. Adams D.W., Errington J. Bacterial cell division: as sembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 2009, 7: 642-653. https://doi.org/10.1038/nrmicro2198
25. Blaauwen T.D.E.N., Buddelmeijer N., Hameete C.O.R.M., Nanninga N. Timing of FtsZ Assembly in Escherichia coli. Journal of bacreriology. 1999, 181: 5167-5175. https://doi.org/10.1128/JB.181.17.5167-5175.1999
26. Goehring N.W., Beckwith J. Diverse Paths to Midcell: Assembly of the Bacterial Cell Division Machinery. Current Biology. 2005, 15(13): R514-R526. https://doi.org/10.1016/j.cub.2005.06.038
27. Hong W., Deng W., Xie J. The Structure, Function, and Regulation of Mycobacterium FtsZ. Cell Biochem Biophys. 2013, 65(2): 97-105. https://doi.org/10.1007/s12013-012-9415-5
28. Król E., Scheffers D. FtsZ Polymerization Assays : Simple Protocols and Considerations. Journal of Visualized Experiments. 2013, 81: 1-13. https://doi.org/10.3791/50844
29. Pydiura N., Karpov P., Blume Ya. Design of specific cytoskeleton related biological database and data ma nagement environment for bioinformatical cytoskeleton in ves tigation and collaboration within virtual Grid-orga ni sa tion. Proceedings of the International Moscow Con fe ren ce on Computational Molecular Biology (MCCMB'11). July 21-24, 2011, Moscow, Rossia: 297-298.
30. Pydiura N., Karpov P., Blume Ya. Hardware environment for CSLabGrid: Reaching maximum efficacy of computations in structural biology and bioinformatics. Second International Conference "Cluster Computing" CC 2013 (Ukraine, Lviv, June 3-5, 2013), Ukraine, Lviv; 06/2013: 191-194.
31. Pydiura N., Karpov P., Blume Ya. On the Efficiency of CPU and Hybrid CPU-GPU Systems in Computational Biology Tasks. Computer Science and Applications (Ethan Publishing Company). 2014, 1(1): 48-59.
32. Karpov P.A., Bryrsun V.M., Rayevsky A.V., Demchuk O.M., Pydiura N.O., Ozheredov S.P., Samofalova D.A., Spivak S.I., Yemets A.I., Kalchenko V.I., Blume Ya.B. Highthroughput screening of new antimitotic compounds based on potential of Virtual Organization CSLabGrid. Nauka i innovacii (Science and Innovation). 2015, 11(1): 92-100 [in Ukrainian]. https://doi.org/10.15407/scin11.01.092
33. Cole S.T., Brosch R., Parkhill J., Garnier T., Churcher C.M., Harris D.E., Gordon S.V., Eiglmeier K., Gas S., Barry C.E. III, Tekaia F., Badcock K., Basham D., Brown D., Chil lingworth T., Connor R., Davies R.M., Devlin K., Barrell B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998, 393: 537-544. https://doi.org/10.1038/31159
34. Fleischmann R.D., Alland D., Eisen J.A., Carpenter L., White O., Peterson J.D., DeBoy R.T., Dodson R.J., Gwinn M.L., Haft D.H., Hickey E.K., Kolonay J.F., Nelson W.C., Umayam L.A., Ermolaeva M.D., Salzberg S.L., Delcher A., Utterback T.R., Fraser C.M. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains J. Bacteriol. 2002, 184: 5479-5490.
https://doi.org/10.1128/JB.184.19.5479-5490.2002
35. The UniProt Consortium. The Universal Protein Re source (UniProt). Nucl. Acids Res. 2008, 36: 190-195. https://doi.org/10.1093/nar/gkm895
36. Guex N., Peitsch M.C. SWISS-MODEL and the SwissPdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997, 18(15): 2714-2723. https://doi.org/10.1002/elps.1150181505
37. Eswar N., Marti-Renom M.A., Webb B., Madhusudhan M.S., Eramian D., Shen M.Y., Pieper U., Sali A. Comparative Protein Structure Modeling With MODELLER. Cur Prot in Bioinform, John Wiley & Sons, Inc. 2006. Sup.15: 5.6.1-5.6.30. https://doi.org/10.1002/0471250953.bi0506s15
38. Roy A., Kucukural A., Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols. 2010, 5: 725-738. https://doi.org/10.1038/nprot.2010.5
39. Roy A., Yang J., Zhang Y. COFACTOR: An accurate com parative algorithm for structure-based protein function annotation. Nucl. Acids Res. 2012, 40: W471- W477. https://doi.org/10.1093/nar/gks372
40. Kuntal B.K., Aparoy P., Reddanna P. EasyModeller: A gra phical interface to MODELLER. BMC Res Notes. 2010, 3(226). doi: 10.1186/1756-0500-3-226. https://doi.org/10.1186/1756-0500-3-226
41. Melo F., Feytmans E. Assessing protein structures with a non-local atomic interaction energy. J. Mol. Biol. 1998, 277: 1141-1152. https://doi.org/10.1006/jmbi.1998.1665
42. Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993, 26: 283-291. https://doi.org/10.1107/S0021889892009944
43. Chen V.B., Arendall W.B., Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 2010, 66(Pt.1): 12-21. https://doi.org/10.1107/S0907444909042073
44. Eisenberg D., Lüthy R., Bowie J.U. VERIFY3D: as sessment of protein models with three-dimensional profiles. Methods Enzymol. 1997, 277: 396-404. https://doi.org/10.1016/S0076-6879(97)77022-8
45. Zoete V., Cuendet M.A., Grosdidier A., Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem. 2011, 32(11): 2359-2368. https://doi.org/10.1002/jcc.21816
46. Verdonk M.L., Cole J.C., Hartshorn M.J., Murray C.W., Taylor R.D. Improved protein-ligand docking using GOLD. Proteins. 2003, 52(4): 609-623. https://doi.org/10.1002/prot.10465
47. Hartshorn M.J., Verdonk M.L., Chessari G., Brewerton S.C., Mooij W.T., Mortenson P.N., Murray C.W. Diverse, HighQuality Test Set for the Validation of Protein-Ligand Docking Performance. J. Med. Chem. 2007, 50: 726-741. https://doi.org/10.1021/jm061277y
48. Huang S.-Y., Zou X. Advances and Challenges in Protein-Ligand Docking. Int. J. Mol. Sci. 2010, 11: 3016- 3034. https://doi.org/10.3390/ijms11083016
49. Schneider N., Lange G., Hindle S., Klein R., Rarey M. A consistent description of HYdrogen bond and DEhyd ration energies in protein-ligand complexes: methods behind the HYDE scoring function. J. Comput. Aided. Mol. Des. 2013, 27(1): 15-29. https://doi.org/10.1007/s10822-012-9626-2
50. Schneider N., Hindle S., Lange G., Klein R., Albrecht J., Briem H., Beyer K., Claußen H., Gastreich M., Lemmen C., Rarey R. Substantial improvements in large-scale redock ing and screening using the novel HYDE scoring function. J. Comput. Aided. Mol. Des. 2012b. 26: 701-723. https://doi.org/10.1007/s10822-011-9531-0
51. Hess B., Kutzner C., van der Spoel D., Lindahl E. GROMACS 4: algorithms for highly efficient, loadbalanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4(3): 435-447. https://doi.org/10.1021/ct700301q
52. Pronk S., Páll S., Schulz R., Larsson P., Bjelkmar P., Apos tolov R., Shirts M.R., Smith J.C., Kasson P.M., van der Spoel D., Hess B., Lindahl E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013, 29(7): 845-854. https://doi.org/10.1093/bioinformatics/btt055
53. Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I., Mackerell A.D.Jr. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2009, 31(4): 671-690. https://doi.org/10.1002/jcc.21367
54. Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H, Pedersen L.G. A smooth particle-mesh Ewald potential. J. Chem. Phys. 1995, 103(19): 8577-8592. https://doi.org/10.1063/1.470117
55. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Phys. 1997, 18: 1463-1472.
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
56. Almlöf M., Brandsdal B.O., Aqvist J. Binding affinity prediction with different force fields: examination of the linear interaction energy method. J. Comput. Chem. 2004, 25(10): 1242-1254. https://doi.org/10.1002/jcc.20047
57. Stacklies W., Seifert C., Graeter F. Implementation of force distribution analysis for molecular dynamics simulations. BMC Bioinformatics. 2011, 12(101): 1-5. https://doi.org/10.1186/1471-2105-12-101
|