11(2)04

Nauka innov. 2015, 11(2):37-45
https://doi.org/10.15407/scin11.02.037

G. Telegeev1, L. Polishchuk1, T. Lisecka1, L. Shvachko1, M. Dybkov1, O. Stakhovsky2, І. Vitruk2, E. Stakhovsky2
1Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv
2National Cancer Institute, Kyiv

 

Development and Testing of Complex Molecular Genetic Diagnosis of Neoplasms of the Genitourinary System

Section: Scientific and Technical Innovative Projects of National Academy of Sciences of Ukraine
Language: Ukrainian
Abstract: The comprehensive non-invasive diagnostic protocols for neoplasms of urogenital system based on the use of molecular genetic parameters such as determination of tmp rss2/erg rearrangement using reverse transcriptase chain reaction (PCR), the level of psa3/psa and cxcr4 gene expression using quantitative PCR, promoter methylation status of gstp1 gene using methyl-specific PCR was designed and tested.
Key words: diagnosis, malignant neop.

References:
1. Polyschuk L.A., Stakhovskyj A.E., Teleheev H.D., Stakhovskyj E.A. Sovremennye molekuliarno-henetycheskye podkhody k dyahnostyke onko-zabolevanyj mochepolovoj systemy. Urolohiia, 2010, 14, N 3, pp. 68—76 [in Russian].
2. Polyschuk L.A., Teleheeva P.H., Stakhovskyj A.E. y dr. Novye spetsyfychnye molekuliarnye dyahnostycheskye markery pry onkourolohycheskykh zabolevanyiakh. Laboratornaia dyahnostyka, 2010, N 4(54), pp. 46—51 [in Russian].
3. Dubrovska A., Telegeev G. et al. CXCR4 Expression in Prostate Cancer Progenitor Cells. Plos One, 2012, 7(2), e 31226 [in English].
4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Analyt. Biochem, 1987, 162, pp. 156—159 [in English].
https://doi.org/10.1006/abio.1987.9999
https://doi.org/10.1016/0003-2697(87)90021-2
5. Hessels D., Smit F.P., Verhaegh G.W. et al. Detection of TM PRSS2-ERGFusion transcripts and prostate cancer antigen3 in urinary sediments may improve diagnosis of prostate cancer. Clin. Cancer Res, 2007, 13, pp. 17 [in English].
https://doi.org/10.1158/1078-0432.CCR-07-0700
6. Cojoc M., Peitzsch C., Trautmann F. et al. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets and Therapy, 2013, N 6, pp. 1347—1361 [in English].
7. Bussemakers M.J., van Bokhoven A., Verhaegh G.W. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res, 1999, Dec 1, 59 (23), pp. 5975—79 [in English].
8. Kok J.B.,de, Verhaegh G.W., Roelofs R.W. et al. DD3 (PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res, 2002, 62, pp. 2695—98 [in English].
9. Hessels D., Gunnewiek J.M., van Oort I. et al. DD3 (PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol., 2003, 44(1), pp. 8—15, discussion 15—6 [in English].
https://doi.org/10.1016/S0302-2838(03)00201-X
10. Ploussard G.I., Haese A., van Poppel H. et al. The prostate cancer gene 3 (PCA3) urine test in men with previous negative biopsies: does free-to-total prostate-specific antigen ratio influence the performance of the PCA3 score in predicting positive biopsies? BJU Int., 2010 Oct, 106(8): 1143-7 [in English].
https://doi.org/10.1111/j.1464-410X.2010.09286.x
11. Day J.R., Jost M., Reynolds M.A. et al. PCA3: from basic molecular science to the clinical lab. Cancer Lett., 2011 Feb 1, 301(1): 1—6 [in English].
https://doi.org/10.1016/j.canlet.2010.10.019
12. Clarke R.A., Zhao Z., Guo A.Y. et al. New genomic structure for prostate cancer specific gene PCA3 within BMCC1: implications for prostate cancer detection and progression. PLoS One, 2009, 4(3), e4995. doi: 10.1371/journal.pone.0004995, Epub 2009 Mar 25 [in English].
https://doi.org/10.1371/journal.pone.0004995
13. Auprich M.I., Bjartell A., Chun F.K. et al. Contemporary role of prostate cancer antigen 3 in the management of prostate cancer. Eur. Urol., 2011, 60(5), pp. 1045—54 [in English].
https://doi.org/10.1016/j.eururo.2011.08.003
14. Gyoyao Wu. Glutathione metabolism and its implication for health. J. of Nutrition, 2004, 134(3), pp. 489—492 [in English].
15. Cao D.L, Yao X.D. Advances in biomarkers for early diagnosis of prostate cancer. Chin. J. Cancer, 2010, 29(2), pp. 220—233 [in English].
https://doi.org/10.5732/cjc.009.10274
16. Eaton D.L. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicological sciences, 2007, 49, pp. 156—164 [in English].
https://doi.org/10.1093/toxsci/49.2.156
17. Solonchak A.M., Obolens’ka M.Yu. Struktura i funktsii hlutation-S-transferazy R1. Ukr. bioloh. Zhurnal., 2009, N 1, pp. 5—17 [in Ukrainian].
18. Bernardini S. et al. Hypermethylation of the CpG in the promotor region of the GSTP gene in prostata cancer: a useful diagnostic and prognostic marker. Clin. Chim. Acta., 2004, 350, pp. 1—2 [in English].
https://doi.org/10.1016/j.cccn.2004.07.022
19. Bastian P.J., Ellinger G., Schmidt D. et al. GSTP1 hypermethylation as a molecular marker in the diagnosis of prostate cancer: is there correlation with clinical stage. Eur. J. Med. Res., 2004, N 9(11), pp. 523—527 [in English].
20. Dulaimi E. et al. Promoter Hypermethylation Profile of Kidney Cancer. Clin. Cancer Res., 2004, N 10, pp. 3972—3979 [in English].
https://doi.org/10.1158/1078-0432.CCR-04-0175
21. Battagli C., Uzzo R.G., Dulaimi E. Promoter hyper methylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res., 2003, 63, pp. 8695—8699 [in English].
22. Clark S. et. al. DNA methylation: Bisulphite modification and analysis. Nature Protocols, 2006, N 1, pp. 2353—2364 [in English].
https://doi.org/10.1038/nprot.2006.324