Nauka innov. 2005, 1(3):76-87

Т. Ye. Konstantinova, I. A. Danilenko, V. V. Tokiy, V. A. Glazunova
Donetsk Physico-Technical Institute, NAS of Ukraine, Donetsk


Obtaining Nanodispersed Powders of Zirkonia. From Novation to Innovation

Section: Scientific and Technical Innovative Projects of National Academy of Sciences of Ukraine
Language: Russian
Abstract: Influence of MW radiation, pulse magnetic field and their combinations with ultrasonic processing on process of chemical synthesis zirconia nanopowder with the direct control of their structure, properties and influence of phase structure at various stages of reception of a powder is investigated. It is shown, that essential influence on dispersiveness of a zirconia powder is rendered by structure and the size of agglomerates zirconium hydroxide. Formed at processing by the MICROWAVE field and drying in PMF more friable structure of agglomerate collapses at action on it of ultrasonic fluctuations more easy. Received zirconia nanopowder with the set size of particles in a range 5–20 nanometers and a specific surface 40–140 m2/g, can be used for reception constructional, tool, functional and bioceramics, sorbents and catalysts.
Key words: nanotechnology, pilot production of oxide nanopowders, MW, PMF, ultrasound, nanodiagnostics, ceramics.

1. Abraham Tomas. A BCC, Inc. High Tech Ceramics News, 2003, 15(1) [in English].
2. Rozrobka tehnologii ta organizacija pilotnogo virobnictva keramichnih nanoporoshkiv z ukrains'koi sirovini dlja tehnichnogo ta medichnogo zastosuvannja. Otchet NIR [in Ukrainian].
3. Konstantinova T.E., Danilenko I.A., Tokij V.V. i dr. Nanoporoshki na osnove dioksida cirkonija: poluchenie, issledovanie, primenenie. Nanosistemi, nanomateriali, nanotehnologii, 2004, 2(2):609–632 [in Russian].
4. Andrievskij R.A., Ragulja A.V. Nanostrukturnye materialy. Akademija, 2005 [in Russian].
5. Dumanskij A.V. Uchenie o kolloidah. M., 1948 [in Russian].
6. Savosta M.M., Krivoruchko V.N., Danilenko I.A., Tarenkov V.Yu., Konstantinova T.E., Borodin A.V., Varyukhin V.N. Nuclear spin dynamics and magnetic structure of nanosized particles of La0.7Sr0.3MnO3. Phys. Rev B., 2004, 69;024413 [in English].
7. Konstantinova T., Danilenko I., Dobrikov A., Volkova G., Tokiy V., Gorban S. TEM, ESR and XRD studies of thermally induced formation of nanocrystalline zirconia. Advances in Science and Technology. Techna Srl (ISBN 88-86538-32-4), 2003, 30:187–194 [in English].
8. Konstantinova T.E., Danilenko I.A., Pilipenko N.P., Volkova G. Nanomaterials for SOFC electrolytes and anodes on the base of zirconia. Electrochem. Soc. Proc., 2003, 07:153–159 [in English].
9. Tokiy N., Konstantinova T., Savina D., Tokiy V. Computational modeling of electron properties of 26 d-elements in nanolayer Y-doped tetragonal zirconia. Advances in Science and Technology. Techna Srl (ISBN 88-86538-38-3), 2003, 36:121–128 [in English].
10. Tokiy N.V., Konstantinova T.E., Tokiy V.V., Savina D.L. Influence of oxigen vacancies and 26 dimpurity on electronic and transport properties of zirconia. Electrochem. Soc. Proc., 2003, 07:181–186 [in English].
11. Tokiy N.V., Konstantinova T.Ye., Savina D.L., Tokiy V.V. Modeling of degyhration and dehydrogenation in pure and Ba-, Ca-, Sr- or Y-modified Zirconia nanolayer. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. Kluwer Academic Publishers, Netherlands, 2004:291–298 [in English].
12. Cheikh A., Madani A., Touari A. at al. Ionic Condactivity of Zirconia Based Ceramics from Single Crystals to Nanostructured Polycrystals. J. Europ. Ceram. Soc., 2001, 21:1837–1841 [in English].