1(2)02

Nauka innov. 2005, 1(2):44-57
https://doi.org/10.15407/scin1.02.044

O.M. Ivasishin1, D.G. Savvakin1, К.А. Bondareva1, V.S. Moxson2, V.A. Duz2
1 G. V. Kurdyumov Institute for Metal Physics , NAS of Ukraine, Kyiv
2 ADMA Products, Inc., Hudson, Ohio, USA

 

Production of Titanium Alloys and Components by Cost-Effective Powder Metallurgy Approach for Wide Industrial Application

Section: Scientific and Technical Innovative Projects of National Academy of Sciences of Ukraine
Language: Russian
Abstract: Production of powder metallurgy titanium alloys and components can lead to a substantial reduction in the cost of parts compared to the more conventional cast and wrought processes and, therefore, has the potential to increase the use of titanium. In this study Ti-6Al-4V, Ti-5Al-2.5Fe and Ti-8Mn materials were synthesized with simplest press and sinter technique using blended elemental powder metallurgy. Final porosity which influences the mechanical properties is critical issue in this approach. It was shown that use of hydrogenated titanium powder instead of traditional titanium powder combined with master alloy additions significantly improved the synthesis in sense that higher relative density (up to 99 %, i.e. density close to theoretical), better chemical homogeneity, uniform sintered microstructure, the high mechanical properties and the lowest cost were achieved. Sintered materials had tensile and fatigue properties that rival those of conventionally processed alloys. This approach is particularly amenable to the production of components in the cost-sensitive auto industry.
Key words: titanium alloys, powder alloys, synthesis, stress-strain properties.

References:
1. Froes F.H., Eylon D. Powder metallurgy of titanium alloys – a review. In: Titanium Technology: Present Status and Future Trends, F.H. Froes, D. Eylon, H.B. Bomberger, eds., Titanium Development Assosiation, 1985:49–59 [in English].
2. Abkowitz S., Abkowitz S.M., Weihrauch P.F., Wells M.G.H. Low cost PM manufacture of titanium alloy components for fatique critical application. In: PM in Aerospace, Defense and Demanding Applications, F.H.Froes, ed., Metal Powder Industries Federation, Princeton, NY, 1993:241 [in English].
3. Moxson V.S., Senkov O.N., Froes F.H. Production and applications of low cost titanium powder products. The International Journal of Powder Metallurgy, 1998, 34 (5):45–53 [in English].
4. Andersen P.J. US Patent No 4432795 [in English].
5. Ivasishin O.M., Demidik A.N., Savvakin D.G. Ispol'zovanie gidrida titana dlja sinteza aljuminidov titana iz poroshkovyh materialov. Poroshkovaja metallurgija, 1999, N 9/10:3–70 [in Russian].
6. Ivasishin O.M., Demidik A.N., Savvakin D.G. Phase Transformations on Synthesis of Titanium Aluminides from TiH2 and Al Powders, Titanium`95: Science and Technology, P.A. Blenkinsop, W.J. Evans, H.M. Flower, eds., The University Press, UK, 1996:440–447 [in English].
7. Ivasishin O.M., Anokhin V.M., Demidik A.N., Savvakin D.G. Cost Effective Blended Elemental Powder Metallurgy of Titanium Alloys for Transportation Application. Key Engineering Materials, 2000, 188;55–62 [in English].
https://doi.org/10.4028/www.scientific.net/KEM.188.55
8. Zwicker U., Buehler K., Mueller R. et al. Mechanical properties and tissue reactions of a titanium alloy for medical implants. In: Titanium 80: Science and Technology, H. Kimura, O. Izumi, eds., Met. Soc. AIME, 1980:505–514 [in English].
9. TIMETAL-62S Data Sheet, Titanium Metal Corporation, USA, 2000 [in English].
10. Il'in A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Vodorodnaja tehnologija titanovyh splavov. Moskva: MISIS, 2002 [in Russian].
11. Senkov O.N., Froes F.H. Beneficial effect of hydrogen as a temporary alloying element on processing and properties of titanium alloys. Proc. of 10th World Conf. on Titanium (Germany, 2003),WILEY-VCH Verlag, Weinheim, 2004,  2:1353–1360 [in English].
12. Kolachev B.A., Il'in A.A., Lavrenko B.A., Levinskij Ju.V. Gidridnye sistemy. Spravochnik. Moskva: Metallurgija, 1992 [in Russian].
13. Torresi R.M., Camara O.R., De Pauli C.D. Influence of the hydrogen evolution reaction on the anodic titanium oxide film properties. Electrochimica Acta, 1987, 32 (9):1357–1363 [in English].
https://doi.org/10.1016/0013-4686(87)85067-3
14. Dahms M., Leitner G., Poessnecker W. et al. Pore formation during reactive sintering of extruded titanium-aluminum powder mixtures, Z. Metallkd., 1993, 84(5):351–357 [in English].
15. Bohm A., Kieback B. Investigation of swelling behavior of Ti-Al elemental powder mixtures during reaction sintering. Z. Metallkd., 1998, 89(2):90–95 [in English].
16. Murray J.L. The Fe-Ti system. Bulletin of Alloy Phase Diagrams, 1981, 2(3):320–334 [in English].
https://doi.org/10.1007/BF02868286
17. Ivasishin O.M., Bondareva K.A., Dehtjar A.I., Savvakin D.G. i dr. Sintez splavov Ti-Fe i Ti-Al-Fe iz jelementarnyh poroshkovyh smesej. Metallofizika i novejshie tehnologii, 2004, 26(7):963–980 [in Russian].
18. Murray J.L. The Mn-Ti system. Bulletin of Alloy Phase Diagrams, 1981, 2(3):334–343 [in English].
https://doi.org/10.1007/BF02868287
19. Ivasishin O.M., Bondareva K.A., Bondarchuk V.I., Savvakin D.G. i dr. Ustalostnye svojstva splava Ti-6Al-4V, poluchennogo metodom poroshkovoj metallurgii. Problemy prochnosti, 2004, 3:5–13 [in Russian].